Пористый шоколад дисперсная система. Химия. Дисперсные системы - что это такое? Системы лиофильные и лиофобные

Признак классификации

Название системы

Размер частиц дисперсной фазы :

Ультрамикрогетерогенная (наносистема)

Ультрадисперсная

10 нм – 1 мкм

Высокодисперсная

1 – 100 мкм

Грубодисперсная

Фракционный состав частиц дисперсной фазы :

частицы одинакового размера

Монодисперсная

частицы разного размера

Полидисперсная

Концентрация частиц дисперсной фазы :

Свободнодисперсная или связнодисперсная

Связнодисперсная или свободнодисперсная

Характер взаимодействия дисперсных частиц с дисперсионной средой :

Лиофобная

Лиофильная

Характер распределения фаз :

сплошное

Континуальная

сетка тонких прослоек

Биконтинуальная

Форма частиц :

Длина, ширина и толщина примерно одинакова (от 1 нм до 10 мкм)

Объёмные (трехмерные)

толщина одинакова (1 нм – 10 мкм), а длина и ширина значительно больше и могут иметь макроскопические значения (более 100 мкм)

Поверхностные (двухмерные)

очень тонкие нити, волокна, диаметр поперечного сечения составляет от 1 нм до 10 мкм

Линейные (одномерные)

сферическая, кубическая

Симметричные

эллипсоидная, призматическая

Анизодиаметричные

Классификация по агрегатному состоянию. Наиболее общая классификация дисперсных систем основана на различии в агрегатном состоянии дисперсионной среди и дисперсной фазы. Сочетания трех видов агрегатного состояния позволяют выделить девять видов дисперсных систем. Для краткости записи их принято обозначать дробью, числитель которой указывает на дисперсную фазу, а знаменатель на дисперсионную среду, например для системы "газ в жидкости" принято обозначение Г/Ж.

Классификация дисперсных систем по агрегатному состоянию дисперсной фазы и дисперсионной среды

Обозначение

Дисперсная фаза

Дисперсионная среда

Название и пример

Эмульсии: нефть, крем, молоко

Суспензии и золи: пульпа, ил, взвесь, паста

Газообразная

Газовые эмульсии, пены, газированная вода

Капиллярные системы: жидкость в пористых телах, грунт, почва, клетки, жемчуг

Твердые гетерогенные системы: сплавы, бетон, ситаллы, композиционные материалы, горные породы

Газообразная

Пористые тела, мембраны, пемзы

Газообразная

Аэрозоли: туманы, облака

Газообразная

Аэрозоли (пыли, дымы), порошки

Газообразная

Газообразная

Дисперсная система не образуется

Все перечисленные комбинации возможны и реально существуют.

Несколько особняком стоит первый случай - Г 1 /Г 2 . Как правило, смеси газов образуют гомогенную молекулярно-дисперсную систему. И только некоторые газы при высоком давлении способны давать смесь с ограниченной растворимостью - гетерогенные смеси. Следует также отметить своеобразие таких систем, как пены, пенопласты, концентрированные эмульсии, пасты. Своеобразие заключается в том, что в этом случае диспергирована не только дисперсная фаза, но и дисперсионная среда, так как частицы диспергированного материала разделены тончайшей пленкой среды; толщина пленки может достигать коллоидных размеров, т. е. среда также коллоидно-дисперсна, но только в одном измерении - по толщине.

В коллоидно-дисперсном состоянии дисперсная фаза состоит из сравнительно небольшого числа молекул. Отдельные коллоидные частицы представляют собой, по существу, зародыши фазы, агрегатное состояние которой иногда трудно установить с полной уверенностью.

Кроме того, опыт показывает, что различие в агрегатном состоянии диспергированного вещества (при неизменном агрегатном состоянии дисперсионной среды) не влечет за собой существенных изменений в свойствах коллоидной системы. В связи с этим классификация упрощается, и возможные девять типов дисперсных систем можно свести к трем - по агрегатному состоянию среды: системы с газообразной, жидкой и твердой средой. Для краткости их именуют соответственно аэрозоли, лиозоли и солидозоли. В зависимости от природы дисперси­онной среды лиозоли называют гидрозолями, алкозолями, этерозолями и т. д. Дисперсионной средой этих золей является соответственно вода, спирт, эфир. Микрогетерогенные системы с жидкой дисперсионной средой и твердой дисперсной фазой называют суспензиями, с жидкой дисперсной фазой - эмульсиями.

Указанные три группы золей существенно отличаются друг от друга свойствами, в частности устойчивостью. Вопрос об устойчивости коллоидных систем - это очень важный вопрос, касающийся непосредственно самого их существования. Поэтому он заслуживает более внимательного рассмотрения. Ранее уже отмечалось, что коллоидно-дисперсные системы термодинамически неустойчивы. Но это положение следует уточнить, тем более, что для различных золей (аэрозолей, лиозолей, солидозолей) окончательная обстановка складывается неодинаковой.

Суспензии - дисперсные системы, в которых дисперсной фазой является твердое вещество, а дисперсионной средой - жидкость, - причем твердое вещество практически нерастворимо в жидкости. Чтобы приготовить суспензию, надо вещество измельчить до тонкого порошка, высыпать в жидкость, в которой вещество не растворяется, и хорошо взболтать (например, взбалтывание глины в воде). Со временем частички выпадут на дно сосуда. Этот процесс называется седиментацией . Очевидно, чем меньше частички, тем дольше будет сохраняться суспензия. Поэтому седиментационная неустойчивость тем выше, чем крупнее частицы.

Эмульсии - дисперсные системы, в которых и дисперсная фаза и дисперсионная среда являются жидкостями, взаимно не смешивающихся. Из воды и масла можно приготовить эмульсию длительным встряхиванием смеси. Примером эмульсии является молоко, в котором мелкие шарики жира плавают в жидкости. Суспензии и эмульсии - двухфазные системы.

Пены . Как и эмульсии, пены - грубодисперсные системы, Поэтому во многих технологических процессах пены получают теми же диспергационными методами, которые применяют для получения газовых пузырьков.

Аэрозоль – дисперсная система, состоящая из мелких, твёрдых или жидких частиц, взвешенных в газовой среде. Аэрозоли, дисперсная фаза которых состоит из капелек жидкости, называются туманами, а в случае твёрдой дисперсной фазы – дымами. Пыль относят к грубодисперсным аэрозолям.

По размерам частиц свободнодисперсные системы подразделяются

Ультрамикрогетерогенные системы также называют коллоидными растворами или золями . В зависимости от природы дисперсионной среды, золи подразделяют на твердые золи, аэрозоли (золи с газообразной дисперсионной средой) и лиозоли (золи с жидкой дисперсионной средой). К микрогетерогенным системам относят суспензии, эмульсии, пены и порошки. Наиболее распространёнными грубодисперсными системами являются системы твёрдое вещество-газ, например, песок. Связнодисперсные системы (пористые тела) по классификации М.М. Дубинина подразделяют на группы

Дисперсные системы. Определение. Классификация.

Растворы

В предыдущем параграфе мы говорили о растворах . Здесь коротко напомним об этом понятии.


Растворами называют однородные (гомогенные) системы, состоящие из двух и более компонентов.


Гомогенная система – это однородная система, химический состав и физические свойства которой во всех частях одинаковы или меняются непрерывно, без скачков (между частями системы нет поверхностей раздела).


Такое определение раствора не вполне корректно. Оно скорее относится к истинным растворам .


В тоже время существуют ещё коллоидные растворы , которые являются не гомогенными, а гетерогенными , т.е. состоят из разных фаз, разделённых поверхностью раздела.


Для того чтобы достичь большей чёткости в определениях используют другой термин – дисперсные системы .


Перед рассмотрением дисперсных систем немного расскажем об истории их изучения и о появления такого термина как коллоидные растворы .

История вопроса

Ещё в 1845 г. химик Франческо Сельми, исследуя свойства различных растворов, заметил, что биологические жидкости – сыворотка и плазма крови, лимфа и другие – резко отличаются по своим свойствам от обычных истинных растворов, и поэтому такие жидкости были им названы псевдорастворами.

Коллоиды и кристаллоиды

Дальнейшие исследования в этом направлении, проводившиеся с 1861 г. английским учёным Томасом Грэмом, показали, что одни вещества, быстро диффундирующие и проходящие через растительные и животные мембраны, легко кристаллизуются, другие же обладают малой способностью к диффузии, не проходят через мембраны и не кристаллизуются, а образуют аморфные осадки.


Первые Грэм назвал кристаллоидами , а вторые – коллоидами (от греческого слова kolla – клей и eidos – вид) или клееподобными веществами.


В частности, было выявлено, что вещества, способные к образованию аморфных осадков, как, например, альбумин, желатин, гуммиарабик, гидроокиси железа и алюминия и некоторые другие вещества, диффундируют в воде медленно по сравнению со скоростью диффузии таких кристаллических веществ, как поваренная соль, сернокислый магний, тростниковый сахар и др.


В таблице ниже приведены коэффициенты диффузии D для некоторых кристаллоидов и коллоидов при 18С.



Из таблицы видно, что между молекулярным весом и коэффициентом диффузии существует обратная зависимость.


Кромме того у кристаллоидов была обнаружена способность не только быстро диффундировать, но и диализироваться , т.е. проходить через мембранны, в противоположность коллоидам, имеющим больший размер молекул и поэтому медленно диффундирующим и не проникающим через мембраны.


В качестве мембран используют стенки бычьего пузыря, целлофан, плёнки из железисто-синеродистой меди и т.д.


На основании сделанных наблюдений Грэм установил, что все вещества могут быть подразделены на кристаллоиды и коллоиды .

Русские не согласны

Против такого строго разделения химических веществ возражал профессор Киевского университета И.Г. Борщёв (1869). Мнение Борщёва позднее было подтвеждено исследованиями другого русского учёного Веймарна , который доказал, что одно и то же вещество в зависимости от условий может проявлять свойства коллоидов или кристаллоидов.


Так, например, раствор мыла в воде обладает свойствами коллоида , а мыло, растворённое в спирте, проявляет свойства истинных растворов .


Точно также кристаллические соли, например, поваренная соль, растворённая в воде, даёт истинный раствор , а в бензоле – коллоидный раствор и т.п.


Гемоглобин же или яичный альбумин, обладающие свойствами коллоидов, могут быть получены в кристаллическом состоянии.


Д.И. Менделеев полагал, что любое вещество, в зависимости от условий и природы среды, может проявлять свойства коллоида . В настоящее время любое вещество можно получить в коллоидном состоянии.


Таким образом, нет оснований подразделять вещества на два обособленных класса – на кристаллоиды и коллоиды, а можно говорить о коллоидном и кристаллоидном состоянии вещества.


Под коллоидным состоянием вещества подразумевается определённая степень его раздробленности или дисперсности и нахождении коллоидных частиц во взвешенном состоянии в растворителе.


Наука, изучающая физико-химические свойства гетерогенных высокодисперсных и высокомолекулярных систем называется коллоидной химией .

Дисперсные системы

Если одно вещество, находящееся в раздробленном (диспергированном) состоянии, равномерно распределено в массе другого вещества, то такую систему называют дисперсной.


В таких системах раздробленное вещество принято называть дисперсной фазой , а среду, в которой она распределена, - дисперсионной средой .


Так, например, система, представляющая собой взмученную глину в воде, состоит из взвешенных мелких частиц глины – дисперсной фазы и воды – дисперсионной среды.


Дисперсные (раздробленные) системы являются гетерогенными .


Дисперсные системы, в отличие от гетерогенных с относительно крупными, сплошными фазами, называют микрогетерогенными , а коллоиднодисперсные системы называют ультрамикрогетерогенными .

Классификация дисперсных систем

Классификацию дисперсных систем чаще всего производят исходя из степени дисперсности или агрегатного состояния дисперсной фазы и дисперсионной среды.

Классификация по степени дисперсности

Все дисперсные системы по величине частиц дисперсной фазы можно разделить на следующие группы:



Для справки прводим единицы размеров в системе СИ:
1 м (метр) = 102 см (сантиметра) = 103 мм (миллиметра) = 106 мкм (микрометра) = 109 нм (нанометра).

Иногда применяют другие единицы – мк (микрон) или ммк (миллимикрон), причём:
1 нм = 10 -9 м =10 -7 см = 1 ммк;
1 мкм = 10 -6 м = 10 -4 см = 1 мк.


Грубодисперсные системы.


Эти системы содержат в качестве дисперсной фазы наиболее крупные частицы диаметром от 0,1 мк и выше . К этим системам относятся суспензии и эмульсии .


Суспензиями называют системы, в которых твёрдое вещество находится в жидкой дисперсионной среде, например, взвесь крахмала, глины и др. в воде.


Эмульсиями называют дисперсионные системы двух несмешивающихся жидкостей, где капельки одной жидкости во взвешенном состоянии распределены в объёме другой жидкости. Например, масло, бензол, толуол в воде или капельки жира (диаметром от 0,1 до 22 мк) в молоке и др.


Коллоидные системы.


Они имеют размеры частиц дисперсной фазы от 0,1 мк до 1 ммк (или от 10 -5 до 10 -7 см). Такие частицы могут проходить через поры фильтровальной бумаги, но не проникают через поры животных и растительных мембран.


Коллоидные частицы при наличии у них электрического заряда и сольватно-ионных оболочек остаются во взвешенном состоянии и без изменения условий очень долго могут не выпадать в осадок.


Примерами коллоидных систем могут служить растворы альбумина, желатина, гуммиарабика, коллоидные растворы золота, серебра, сернистого мышьяка и др.


Молекулярно-дисперсные системы.


Такие системы имеют размеры частиц, не превышающие 1ммк. К молекулярно-дисперсным системам относятся истинные растворы неэлектролитов.


Ионно-дисперсные системы.


Это растворы различных электролитов, как, например, солей, оснований и т.д., распадающихся на соответствующие ионы, размеры которых весьма малы и выходят далеко за пределы
10 -8 см .


Уточнение по повду представления истинных растворов как дисперсных системах.

Из приведённой здесь классификации видно, что любой раствор (как истинный, так и коллоидный) можно представить как дисперсную среду. Истинные и коллоидные растворы будут различаться размерами частиц дисперсных фаз. Но выше мы писали о гомогенности истинных растворов, а дисперсионные системы гетерогенны. Как разрешить это противоречие?

Если говорить о структуре истинных растворов, то их гомогенность будет относительной. Структурные единицы истинных растворов (молекулы или ионы) значительно меньше частиц коллоидных растворов. Поэтому, можно сказать, что по сравнению с коллоидными растворами и взвесями, истинные растворы гомогенны.

Если же говорить о свойствах истинных растворов, то их нельзя в полной мере называть дисперсными системами, поскольку обязательным существованием дисперсных систем является взаимная нерастворимость диспергированного вещества и дисперсионной среды.

В коллоидных растворах и грубых взвесях дисперсная фаза и дисперсионная среда практически не смешиваются и не реагируют друг с другом химически. Этого совсем нельзя сказать об истинных растворах. В них при растворении вещества смешиваются и даже взаимодействуют друг с другом. По этой причине коллоидные растворы резко отличаются по свойствам от истинных растворов.


Размеры некоторых молекул, частиц, клеток.



По мере изменения размеров частиц от наиболее крупных к мелким и обратно будут соответственно меняться и свойства дисперсных систем. При этом коллоидные системы занимают как бы промежуточное положение между грубыми взвесями и молекулярно-дисперсными системами.

Классификация по агрегатному состоянию дисперсной фазы и дисперсионной среды.

Пены – это дисперсия газа в жидкости, причём в пенах жидкость вырождается до тонких плёнок, разделяющих отдельные пузырьки газа.


Эмульсиями называют дисперсные системы, в которых одна жидкость раздроблена другой, нерастворяющей её жидкостью (например вода в жире).


Суспензиями называют низкодисперсные системы твёрдых частиц в жидкостях.


Сочетания трех видов агрегатного состояния позволяют выделить девять видов дисперсных систем:


Дисперсная фаза
Дисперсионная среда
Название и пример

Газообразная

Газообразная

Дисперсная система не образуется

Газообразная

Газовые эмульсии и пены

Газообразная

Пористые тела: поролон пемза

Газообразная

Аэрозоли: туманы, облака

Эмульсии: нефть, крем, молоко, маргарин, масло

Капилярные системы: Жидкость в пористых телах, грунт, почва

Газообразная

Аэрозоли (пыли, дымы), поршки

Суспензии: пульпа, ил, взвесь, паста

Твёрдые системы: сплавы, бетон

Золи – другое название коллоидных растворов.


Коллоидные растворы иначе называют золями (от латинского solutus – растворённый).


Дисперсные системы с газообразной дисперсионной средой называют аэрозолями . Туманы представляют собой аэрозоли с жидкой дисперсной фазой, а пыль и дым – аэрозоли с твёрдой дисперсной фазой. Дым более высокодисперсная система, чем пыль.


Дисперсные системы с жидкой дисперсионной средой называют лизолями (от греческого «лиос» – жидкость).


В зависимости от растворителя (дисперсионной среды), т.е. воды, спирта бензола или эфира и т.д., различают гидрозоли, алкозоли, бензоли, этерозоли и т.д.


Связнодисперсные системы. Гели.


Дисперсные системы могут быть свободнодисперсными и связнодисперсными в зависимости от отсутствия или наличия взаимодействия между частицами дисперсной фазы.


К свободнодисперсным системам относятся аэрозоли, лизоли, разбавленные суспензии и эмульсии. Они текучи. В этих системах частицы дисперсной фазы не имеют контактов, участвуют в беспорядочном тепловом движении, свободно перемещаются под действием силы тяжести.



На рисунках выше изображены свободно-дисперсные системы :
На рисунках а, б, в изображены корпускулярно-дисперсные системы :
а,б - монодисперсные системы,
в - полидисперсная система,
На рисунке г изображена волокнисто-дисперсная система
На рисунке д изображена плёночно-дисперсная система


– твердообразны. Они возникают при контакте частиц дисперсной фазы, приводящем к образованию структуры в виде каркаса или сетки.


Такая структура ограничивает текучесть дисперсной системы и придаёт ей способность сохранять форму. Подобные структурированные коллоидные системы называются гелями .


Переход золя в гель, происходящий в результате понижения устойчивости золя, называют гелеобразованием (или желатинированием).



На рисунках а, б, в изображены связнодисперсные системы :
а - гель,
б - коагулят с плотной структурой,
в - коагулят с рыхлой - "арочной" структурой
На рисунках г, д изображены капилярнодисперсные системы


Порошки (пасты), пены – примеры связнодисперсных систем.


Почва , образовавшаяся в результате контакта и уплотнения дисперсных частиц почвенных минералов и гумусовых (органических) веществ, также представляет собой связнодисперсную систему.


Сплошную массу вещества могут пронизывать поры и капиляры, образующие капилярнодисперсные системы. К ним относятся, например, древесина, кожа, бумага, картон, ткани .

Лиофильность и лиофобность

Общей характеристикой коллоидных растворов является свойство их дисперсной фазы взаимодействовать с дисперсионной средой. В этом отношении различают два типа золей:


1. Лиофобные (от греческого phobia – ненависть ) и

2. Лиофильные (от греческого philia – любовь ).


У лиофобных золей частицы не имеют сродства к растворителю, слабо с ним взаимодействуют и образуют вокруг себя тонкую оболочку из молекул растворителя.


В частности, если дисперсионной средой является вода, то такие системы называются гидрофобными , например, золи металлов железа, золота, сернистого мышьяка, хлористого серебра и т.д.


В лиофильных системах между диспергированным веществом и растворителем имеется сродство. Частицы дисперсной фазы, в этом случае, приобретают более объёмную оболочку из молекул растворителя.


В случае водной дисперсионной среды такие системы называются гидрофильными , как, например, растворы белка, крахмала, агар-агара, гуммиарабика и др.

Коагуляция коллоидов. Стабилизаторы.
Вещество на границе раздела фаз.

Все жидкости и твёрдые тела ограничены внешней поверхностью, на которой они соприкасаются с фазами другого состава и структуры, например, с паром, другой жидкостью или твёрдым телом.


Свойства вещества в этой межфазовой поверхности , толщиной в несколько поперечников атомов или молекул, отличаются от свойств внутри объёма фазы.


Внутри объёма чистого вещества в твёрдом, жидком или газообразном состоянии любая молекула окружена себе подобными молекулами.


В пограничном слое молекулы находятся во взаимодействии или с другим числом молекул (другим в сравнении с взаимодействием внутри объёма вещества).


Это происходит, например, на границе жидкости или твёрдого тела с их паром. Либо в пограничном слое молекулы вещества взаимодействуют с молекулами другой химической природы, например, на границе двух взаимно малорастворимых жидкостей.


В результате различия в характере взаимодействия внутри объёма фаз и на границе фаз возникают силовые поля , связанные с этой неравномерностью. (Подробнее об этом в параграфе Поверхностное натяжение жидкости.)


Чем больше различие в напряжённости межмолекулярных сил, действующих в каждой из фаз, тем больше потенциальная энергия межфазовой поверхности, кратко называемой поверхностной энергией .


Поверхностное натяжение
Для оценки поверхностной энергии пользуются такой величиной, как удельная свободная поверхностная энергия. Она равна работе затрачиваемой на образование единицы площади новой поверхности раздела фаз (при условии постоянной температуры).
В случае границы двух конденсированных фаз эту величину называют пограничным натяжением .
Когда говорят о границе жидкости с её парами, то эту величину называют поверхностным натяжением .

Коагуляция коллоидов

Все самопроизвольные процессы происходят в направлении уменьшения энергии системы (изобарного потенциала).


Аналогично, на границе раздела фаз самопроизвольно происходят процессы в направлении уменьшения свободной поверхностной энергии.


Свободная энергия тем меньше, чем меньше поверхность раздела фаз.


А поверхность раздела фаз, в свою очередь, связана со степенью дисперсности растворённого вещества. Чем выше дисперсность (мельче частицы дисперсной фазы), тем больше поверхность раздела фаз.


Таким образом, в дисперсных системах всегда существуют силы, приводящие к уменьшению суммарной поверхности раздела фаз , т.е. к укрупнению частиц. Поэтому происходит слияние мелких капель в туманах, дождевых облаках и эмульсиях – агрегация высокодисперсных частиц в более крупные образования.


Всё это приводит к разрушению дисперсных систем: туманы и дождевые облака проливаются дождём, эмульсии расслаиваются, коллоидные растворы коагулируют, т.е. разделяются на осадок дисперсной фазы (коагулят) и дисперсионную среду или в случае вытянутых частиц дисперсной фазы, превращаются в гель.


Способность раздробленных систем сохранять присущую им степень дисперсности называется агрегативной устойчивостью .

Стабилизаторы дисперсных систем

Как было сказано ранее, дисперсные системы принципиально термодинамически неустойчивы . Чем выше дисперсность, тем больше свободная поверхностная энергия, тем больше склонность к самопроизвольному уменьшению дисперсности.


Поэтому для получения устойчивых, т.е. длительно сохраняющихся суспензий, эмульсий, коллоидных растворов, необходимо не только достигнуть заданной дисперсности, но и создать условия для её стабилизации.


Ввиду этого устойчивые дисперсные системы состоят не менее чем из трёх компонентов: дисперсной фазы, дисперсионной среды и третьего компонента – стабилизатора дисперсной системы .


Стабилизатор может иметь как ионную, так и молекулярную, часто высокомолекулярную, природу.


Ионная стабилизация золей лиофобных коллоидов связана с присутствием малых концентраций электролитов, создающих ионные пограничные слои между дисперсной фазой и дисперсионной средой.


Высокомолекулярные соединения (белки, полипептиды, поливиниловый спирт и другие), добавляемые для стабилизации дисперсных систем, называют защитными коллоидами.


Адсорбируясь на границе раздела фаз, они образуют в поверхностном слое сетчатые и гелеобразные структуры, создающие структурно-механический барьер, который препятствует объединению частиц дисперсной фазы.


Структурно-механическая стабилизация имеет решающее значение для стабилизации взвесей, паст, пен, концентрированных эмульсий.

В окружающем нас мире чистые вещества встречаются крайне редко, в основном большинство веществ на земле и в атмосфере – это разнообразные смеси, содержащие более двух компонентов. Частицы размером примерно от 1 нм (несколько молекулярных размеров) до 10 мкм называются дисперсными (лат. dispergo – рассеивать, распылять). Разнообразные системы (неорганические, органические, полимерные, белковые), в которых хотя бы одно из веществ находится в виде таких частиц, называются дисперсными. Дисперсные - это гетерогенные системы, состоящие из двух или более фаз с сильно развитой поверхностью раздела между ними или смесь, состоящая как минимум из двух веществ, которые совершенно или практически не смешиваются друг с другом и не реагируют друг с другом химически. Одна из фаз – дисперсная фаза – состоит из очень мелких частиц, распределенных в другой фазе – дисперсионной среде.

Дисперсная система

По агрегатному состоянию дисперсные частицы могут быть твердыми, жидкими, газообразными, во многих случаях имеют сложное строение. Дисперсионные среды также бывают газообразными, жидкими и твердыми. В виде дисперсных систем существует большинство реальных тел окружающего нас мира: морская вода, грунты и почвы, ткани живых организмов, многие технические материалы, пищевые продукты и др.

Классификация дисперсных систем

Несмотря на многочисленные попытки предложить единую классификацию этих систем, она до сих пор отсутствует. Причина заключена в том, что в любой классификации принимаются в качестве критерия не все свойства дисперсных систем, а только какое-нибудь одно из них. Рассмотрим наиболее распространенные классификации коллоидных и микрогетерогенных систем.

В любой области знаний, когда приходится сталкиваться со сложными объектами и явлениями, для облегчения и установления определенных закономерностей целесообразно классифицировать их по тем или иным признакам. Это относится и к области дисперсных систем; в разное время для них были предложены различные принципы классификации. По интенсивности взаимодействия веществ дисперсионной среды и дисперсной фазы различают лиофильные и лиофобные коллоиды. Ниже кратко изложены другие приемы классификации дисперсных систем.

Классификация по наличию или отсутствию взаимодействия между частицами дисперсной фазы. Согласно этой классификации дисперсные системы делят на свободнодисперсные и связнодисперсные; классификация применима к коллоидным растворам и к растворам высокомолекулярных соединений.

К свободнодисперсным системам относят типичные коллоидные растворы, суспензии, взвеси, разнообразные растворы высокомолекулярных соединений, которые обладают текучестью, как обычные жидкости и растворы.

К связнодисперсным относят так называемые структурированные системы, в которых в результате взаимодействия между частицами возникает пространственная ажурная сетка-каркас, и система в целом приобретает свойство полутвердого тела. Например, золи некоторых веществ и растворы высокомолекулярных соединений при понижении температуры или с ростом концентрации выше известного предела, не претерпевая внешне каких-либо изменений, утрачивают текучесть - желатинируют (застудневают), переходят в состояние геля (студня). Сюда же можно отнести концентрированные пасты, аморфные осадки.

Классификация по дисперсности. Физические свойства вещества не зависят от размеров тела, но при высокой степени измельчения становятся функцией дисперсности. Например, золи металлов обладают различной окраской в зависимости от степени измельчения. Так, коллоидные растворы золота предельно высокой дисперсности имеют пурпурный цвет, менее дисперсные - синий, еще менее -зеленый. Есть основания полагать, что и другие свойства золей одного и того же вещества меняются по мере измельчения: Напрашивается естественный критерий классификации коллоидных систем по дисперсности, т. е. разделение области коллоидного состояния (10 -5 -10 -7 см ) на ряд более узких интервалов. Такая классификация была в свое время предложена, но она оказалась бесполезной, так как коллоидные системы практически всегда полидисперсны; монодисперсные встречаются очень редко. К тому же степень дисперсности может меняться во времени, т. е. зависит от возраста системы.

Диспе́рсная систе́ма - образования из двух или большего числа фаз (тел) , которые практически не смешиваются и не реагируют друг с другом химически. В типичном случае двухфазной системы первое из веществ (дисперсная фаза ) мелко распределено во втором (дисперсионная среда ). Если фаз несколько, их можно отделить друг от друга физическим способом (центрифугировать, сепарировать и т.д.).

Обычно дисперсные системы - это коллоидные растворы , золи . К дисперсным системам относят также случай твёрдой дисперсной среды, в которой находится дисперсная фаза. Растворы высокомолекулярных соединений также обладают всеми свойствами дисперсных систем.

Классификация дисперсных систем

Наиболее общая классификация дисперсных систем основана на различии в агрегатном состоянии дисперсионной среды и дисперсной фазы (фаз). Сочетания трёх видов агрегатного состояния позволяют выделить девять видов двухфазных дисперсных систем. Для краткости записи их принято обозначать дробью, числитель которой указывает на дисперсную фазу, а знаменатель на дисперсионную среду; например, для системы «газ в жидкости» принято обозначение Г/Ж.

Обозначение Дисперсная фаза Дисперсионная среда Название и пример
Г/Г Газообразная Газообразная Всегда гомогенная смесь (воздух, природный газ)
Ж/Г Жидкая Газообразная Аэрозоли: туманы , облака
Т/Г Твёрдая Газообразная Аэрозоли (пыли, дымы), порошкообразные вещества
Г/Ж Газообразная Жидкая Газовые эмульсии и пены
Ж/Ж Жидкая Жидкая Эмульсии: нефть , крем , молоко
Т/Ж Твёрдая Жидкая Суспензии и золи: пульпа, ил , взвесь , паста
Г/Т Газообразная Твёрдая Пористые тела: пенополимеры , пемза
Ж/Т Жидкая Твёрдая Капиллярные системы (заполненные жидкостью пористые тела): грунт , почва
Т/Т Твёрдая Твёрдая Твёрдые гетерогенные системы: сплавы , бетон , ситаллы , композиционные материалы

По кинетическим свойствам дисперсной фазы двухфазные дисперсные системы можно разделить на два класса:

  • Свободнодисперсные системы , у которых дисперсная фаза подвижна;
  • Связнодисперсные системы , у которых дисперсионная среда твёрдая, а частицы их дисперсной фазы связаны между собой и не могут свободно перемещаться.

В свою очередь, эти системы классифицируются по степени дисперсности .

Системы с одинаковыми по размерам частицами дисперсной фазы называются монодисперсными, а с неодинаковыми по размеру частицами - полидисперсными. Как правило, окружающие нас реальные системы полидисперсны.

Встречаются и дисперсные системы с бо́льшим числом фаз - сложные дисперсные системы. Например, при вскипании жидкой дисперсионной среды с твёрдой дисперсной фазой получается трёхфазная система «пар - капли - твёрдые частицы» .

Другим примером сложной дисперсной системы может служить молоко , основными составными частями которого (не считая воды) являются жир , казеин и молочный сахар . Жир находится в виде эмульсии и при стоянии молока постепенно поднимается кверху (сливки). Казеин содержится в виде коллоидного раствора и самопроизвольно не выделяется, но легко может быть осаждён (в виде творога) при подкислении молока, например, уксусом. В естественных условиях выделение казеина происходит при скисании молока . Наконец, молочный сахар находится в виде молекулярного раствора и выделяется лишь при испарении воды.

Свободнодисперсные системы

Свободнодисперсные системы по размерам частиц подразделяют на:

Ультрамикрогетерогенные системы также называют коллоидными или золями . В зависимости от природы дисперсионной среды, золи подразделяют на твёрдые золи, аэрозоли (золи с газообразной дисперсионной средой) и лиозоли (золи с жидкой дисперсионной средой). К микрогетерогенным системам относят суспензии , эмульсии , пены и порошки. Наиболее распространёнными грубодисперсными системами являются системы «твёрдое тело - газ» (например, песок).

Коллоидные системы играют огромную роль в биологии и человеческой жизни. В биологических жидкостях организма ряд веществ находится в коллоидном состоянии. Биологические объекты (мышечные и нервные клетки , кровь и другие биологические жидкости) можно рассматривать как коллоидные растворы. Дисперсионной средой крови является плазма - водный раствор неорганических солей и белков .

Связнодисперсные системы

Пористые материалы

Пористые материалы по размерам пор подразделяют, согласно классификации М. М. Дубинина , на:

По геометрическим признакам пористые структуры подразделяются на регулярные (у которых в объёме тела наблюдается правильное чередование отдельных пор или полостей и соединяющих их каналов) и стохастические (в которых ориентация, форма, размеры, взаимное расположение и взаимосвязи пор носят случайный характер). Для большинства пористых материалов характерна стохастическая структура. Имеет значение и характер пор: открытые поры сообщаются с поверхностью тела так, что через них возможна фильтрация жидкости или газа; тупиковые поры также сообщаются с поверхностью тела, но их наличие на проницаемости материала не сказывается; закрытые поры .

Твёрдые гетерогенные системы

Характерным примером твёрдых гетерогенных систем являются получившие в последнее время широкое распространение композиционные материалы (композиты) - искусственно созданные сплошные, но неоднородные, материалы, которые состоят из двух или более компонентов с чёткими границами раздела между ними. В большинстве таких материалов (за исключением слоистых) компоненты можно разделить на матрицу и включённые в неё армирующие элементы ; при этом армирующие элементы обычно отвечают за механические характеристики материала, а матрица обеспечивает совместную работу армирующих элементов. К числу старейших композиционных материалов относятся саман , железобетон , булат , папье-маше . Ныне широко распространены