Критерий колмогорова для равномерного распределения в эксель. SPSS в психологии и социальных науках. Графическое представление критерия

Вопрос 3

λ - критерий Колмогорова-Смирнова

Назначение критерия

Критерий λ предназначен для сопоставления двух распределений:

а) эмпирического с теоретическим , например, равномерным или нормальным;

б) одного эмпирического распределения с другим эмпирическим распределением.

Критерий позволяет найти точку, в которой сумма накопленных расхождений между двумя распределениями является наибольшей, и оценить достоверность этого расхождения.

Описание критерия

Если в методе χ 2 мы сопоставляли частоты двух распределений отдельно по каждому разряду, то здесь мы сопоставляем сначала часто­ты по первому разряду, потом по сумме первого и второго разрядов, потом по сумме первого, второго и третьего разрядов и т. д. Таким образом, мы сопоставляем всякий раз накопленные к данному разряду частоты.

Если различия между двумя распределениями существенны, то в какой-то момент разность накопленных частот достигнет критического значения, и мы сможем признать различия статистически достоверны­ми. В формулу критерия λ включается эта разность. Чем больше эмпи­рическое значение λ , тем более существенны различия.

Гипотезы -

Н 0: Различия между двумя распределениями недостоверны (судя по точке максимального накопленного расхождения между ними).

H 1: Различия между двумя распределениями достоверны (судя по точке максимального накопленного расхождения между ними).

Графическое представление критерия

Рассмотрим для иллюстрации распределение желтого (№4) цвета в 8-цветном тесте М. Люшера. Если бы испытуемые случайным обра­зом выбирали цвета, то желтый цвет, так же, как и все остальные, равновероятно мог бы занимать любую из 8-и позиции выбора. На практике, однако, большинство испытуемых помещают этот цвет, "цвет ожидания и надежды" на одну из первых позиций ряда.

На Рис. 4.9 столбиками представлены относительные частоты 8 попадания желтого цвета сначала на 1-ю позицию (первый левый стол­бик), затем на 1-ю и 2-ю позицию (второй столбик), затем на 1-ю, 2-ю и 3-ю позиции и т. д. Мы видим, что высота столбиков постоянно воз­растает, так как они отражают относительные частоты, накопленные к данной позиции. Например, столбик на 3-й позиции имеет высоту 0,51. Это означает, что на первые три позиции желтый цвет помещают 51% испытуемых.

8 Относительная частота, или частость, - это частота, отнесенная к общему коли­честву наблюдении; в данном случае это частота попадания желтого цвета на дан­ную позицию, отнесенная к количеству испытуемых. Например, частота попадания желтого цвета на 1-ю позицию ƒ=24; количество испытуемых n=102; относительная частота ƒ*=ƒ/n=О,235.

Прерывистой линией на Рис. 4.9 соединены точки, отражающие накопленные частоты, которые наблюдались бы, если бы желтый цвет с равной вероятностью попадал на каждую из 8-и позиций. Сплошными линиями обозначены расхождения между эмпирическими и теоретически­ми относительными частотами. Эти расхождения обозначаются как d .

Рис 4.9 . Сопоставления в критерии λ: стрелками отмечены расхождения между эмпирическими и теоретическими накоплениями относительными частотами по каждому разряду

Максимальное расхождение на Рис. 4.9 обозначено как d max Именно эта, третья позиция цвета, и является переломной точкой, опре­деляющей, достоверно ли отличается данное эмпирическое распределе­ние от равномерного. Мы проверим это при рассмотрении Примера 1.

Ограничения критерия λ

1. Критерии требует, чтобы выборка была достаточно большой. При сопоставлении двух эмпирических распределений необходимо, что­бы n 1,2 > 50. Сопоставление эмпирического распределения с теоре­тическим иногда допускается при n> 5 (Ван дер Варден Б.Л., 1960; Гублер Е.В., 1978).

2. Разряды должны быть упорядочены по нарастанию или убыванию какого-либо признака. Они обязательно должны отражать какое-то однонаправленное его изменение. Например, мы можем за разряды принять дни недели, 1-й, 2-й, 3-й месяцы после прохождения курса терапии, повышение температуры тела, усиление чувства недостаточ­ности и т. д. В то же время, если мы возьмем разряды, которые случайно оказались выстроенными в данную последовательность, то и накопление частот будет отражать лишь этот элемент случайного соседства разрядов. Например, если шесть стимульных картин в ме­тодике Хекхаузена разным испытуемым предъявляются в разном порядке, мы не вправе говорить о накоплении реакций при переходе от картины №1 стандартного набора к картине №2 и т. д. Мы не можем говорить об однонаправленном изменении признака при со­поставлении категорий "очередность рождения", "национальность", "специфика полученного образования" и т.п. Эти данные представ­ляют собой номинативные шкалы: в них нет никакого однозначного однонаправленного изменения признака.

Итак, мы не можем накапливать частоты по разрядам, которые отличаются лишь качественно и не представляют собой шкалы порядка. Во всех тех случаях, когда разряды представляют собой не упо­рядоченные по возрастанию или убыванию какого-либо признака кате­гории, нам следует применять метод χ 2 .

Пример 1: Сопоставление эмпирического распределения с теоретическим

Ввыборке здоровых лиц мужского пола, студентов технических и военно-технических вузов в возрасте от 19-ти до 22 лет, средний воз­раст 20 лет, проводился тест Люшера в 8-цветном варианте. Установ­лено, что желтый цвет предпочитается испытуемыми чаще, чем отверга­ется (Табл. 4.16). Можно ли утверждать, что распределение желтого цвета по 8-и позициям у здоровых испытуемых отличается от равно­мерного распределения?

Таблица 4.16

Эмпирические частоты попадания желтого цвета на каждую из 8 позиций (n=102)

Позиции желтого цвета

Эмпирические частоты

Сформулируем гипотезы.

H 0: Эмпирическое распределение желтого цвета по восьми позициям не отличается от равномерного распределения.

H 1: Эмпирическое распределение желтого цвета по восьми позициям отличается от равномерного распределения.

Теперь приступим к расчетам, постепенно заполняя результатами таблицу расчета критерия λ. Все операции лучше прослеживать по Табл. 4.17, тогда они будут более понятными.

Занесем в таблицу наименования (номера) разрядов и соответст­вующие им эмпирические частоты (первый столбец Табл. 4.17).

Затем рассчитаем эмпирические частости ƒ* по формуле:

ƒ* j = ƒ*/ n

где f j - частота попадания желтого цвета на данную позицию; n- общее количество наблюдений;

j - номер позиции по порядку.

Запишем результаты во второй столбец (см. Табл. 4.17).

Теперь нам нужно подсчитать накопленные эмпирические часто­сти ∑ƒ*. Для этого будем суммировать эмпирические частости ƒ*. На­пример, для 1-го разряда накопленная эмпирическая частость будет равняться эмпирической частости 1-го разряда, Eƒ* 1 =0,235 9 .

Для 2-го разряда накопленная эмпирическая частость будет пред­ставлять собой сумму эмпирических частостей 1-го и 2-го разрядов:

Eƒ* 1+2 =O,235+0,147=0,382

Для 3-го разряда накопленная эмпирическая частость будет пред­ставлять собой сумму эмпирических частостей 1-го, 2-го и 3-го разрядов:

Eƒ* 1+2+3 =0,235+0,147+0,128=0,510

Мы видим, что можно упростить задачу, суммируя накопленную эмпирическую частость предыдущего разряда с эмпирической частостью данного разряда, например, для 4-го разряда:

Eƒ* 1+2+3+4 =0,510+0,078=О,588

Запишем результаты этой работы в третий столбец.

Теперь нам необходимо сопоставить накопленные эмпирические частости с накопленными теоретическими частостями. Для 1-го разряда теоретическая частость определяется по формуле:

f * теор = 1/k

9 Все формулы приведены для дискретных признаков, которые могут быть выра­жены целыми числами, например: порядковый номер, количество испытуемых, ко­личественный состав группы и т.п.

где k - количество разрядов (в данном случае - позиций цвета).

Для рассматриваемого примера:

f * теор =1/8=0,125

Эта теоретическая частость относится ко всем 8-и разрядам. Действительно, вероятность попадания желтого (или любого другого) цвета на каждую из 8-и позиций при случайном выборе составляет 1/8, т.е. 0,125.

Накопленные теоретические частости для каждого разряда определяем суммированием.

Для 1-го разряда накопленная теоретическая частость равна теоретической частости попадания в разряд:

f * т1 =0,125

Для 2-го разряда накопленная теоретическая частость представ­ляет собой сумму теоретических частостей 1-го и 2-го разрядов:

f * т1+2 =0,125+0,125=0,250

Для 3-го разряда накопленная теоретическая частость представ­ляет собой сумму накопленной к предыдущему разряду теоретической частости с теоретической частостью данного разряда:

f * т1+2+3 =0,250+0,125=0,375

Можно определить теоретические накопленные частости и путем умножения:

S f * т j = f * теор * j

где f * теор - теоретическая частость;

j - порядковый номер разряда.

Занесем рассчитанные накопленные теоретические частости в четвертый столбец таблицы (Табл. 4.17).

Теперь нам осталось вычислить разности между эмпирическими и теоретическими накопленными частостями (столбцы 3-й и 4-й). В пя­тый столбец записываются абсолютные величины этих разностей, обо­значаемые как d .

Определим по столбцу 5, какая из абсолютных величин разности является наибольшей. Она будет называться d max . В данном случае d max =0,135.

Теперь нам нужно обратиться к Табл. X Приложения 1 для оп­ределения критических значений d max при n=102.

Таблица 4.17

Расчет критерия при сопоставлении распределения выборов желтого цвета с равномерным распределением (n=102)

Позиция желтого цвета

Эмпирическая частота

Эмпирическая частость

Накопленная эмпирическая частость

Накопленная теоретическая частость

Разность

Для данного случая, следовательно,

Очевидно, что чем больше различаются распределения, тем больше и различия в накопленных частостях. Поэтому нам не составит труда распределить зоны значимости и незначимое™ по соответствую­щей оси:

d эмп - d кр

Ответ: Но отвергается при р=0,05. Распределение желтого цве­та по восьми позициям отличается от равномерного распределения. Представим все выполненные действия в виде алгоритма

АЛГОРИТМ 14

Расчет абсолютной величины разности d между эмпирическим и равномерным распределениями

1. Занести в таблицу наименования разрядов и соответствующие им эмпирические частоты (первый столбец).

ƒ* эмп = ƒ эмп / n

где ƒ эмп - эмпирическая частота по данному разряду;

п - общее количество наблюдений.

Занести результаты во второй столбец.

f * j =∑ f * j -1 + f * j

где f * j -1

j - порядковый номер разряда;

f* j:- эмпирическая частость данного j-ro разряда.

Занести результаты в третий столбец таблицы.

f j =∑ f j -1 + f j

где =∑ f j -1 - теоретическая частость, накопленная на предыдущих разрядах;

j - порядковый номер разряда;

ƒ* т j: - теоретическая частость данного разряда. Занести результаты в третий столбец таблицы.

5.Вычислить разности между эмпирическими и теоретическими нако­пленными частостями по каждому разряду (между значениями 3-го и 4-го столбцов).

6.Записать в пятый столбец абсолютные величины полученных раз­ностей, без их знака. Обозначить их как d .

7. Определить по пятому столбцу наибольшую абсолютную величину разности - d max .

8. По Табл. X Приложения 1 определить или рассчитать критические значения d max для данного количества наблюдений n .

Если d max равно критическому значению d или превышает его, различия между распределениями достоверны.

Пример 2: сопоставление двух эмпирических распределений

Интересно сопоставить данные, полученные в предыдущем при­мере, с данными обследования X. Кларом 800 испытуемых (Klar H., 1974, р. 67). X. Кларом было показано, что желтый цвет является единственным цветом, распределение которого по 8 позициям не отли­чается от равномерного. Для сопоставлений им использовался метод χ 2 . Полученные им эмпирические частоты представлены в Табл. 4.18.

Таблица 4.18

Эмпирические частоты попадания желтого цвета на каждую из 8 пози­ций в исследовании X. Клара (по: Klar H., 1974) (п=800)

Разряды-позиции желтого цвета

Эмпирические частоты

Сформулируем гипотезы.

Н 0: Эмпирические распределения желтого цвета по 8 позициям в отечественной выборке и выборке X. Клара не различаются.

H 1: Эмпирические распределения желтого цвета по 8 позициям в отечественной выборке и выборке X. Клара отличаются друг от друга.

Поскольку в данном случае мы будем сопоставлять накопленные эмпирические частости по каждому разряду, теоретические частости нас не интересуют.

Все расчеты будем проводить в таблице по алгоритму 15.

АЛГОРИТМ 15

Расчет критерия λ при сопоставления двух эмпирических распределений

1.Занести в таблицу наименования разрядов и соответствующие им эмпирические частоты, полученные в распределении 1 (первый столбец) и в распределении 2 (второй столбец).

ƒ* э =ƒ э / n 1

где ƒ э

n 1 [ - количество наблюдений в выборке.

Занести эмпирические частости распределения 1 в третей столбец.

ƒ* э =ƒ э / n 2

где ƒ э - эмпирическая частота в данном разряде;

n 2 - количество наблюдений во 2-й выборке.

Занести эмпирические частости распределения 2 в четвертый столбец таблицы.

∑ƒ* j =∑ƒ* j -1 +ƒ* j

где ∑ƒ* j -1 - частость, накопленная на предыдущих разрядах;

j - порядковый номер разряда;

ƒ* j -1 - частости данного разряда.

Полученные результаты записать в пятый столбец.

7.Определить по седьмому столбцу наибольшую абсолютную величину разности

где n 1 - количество наблюдений в первой выборке;

n 2 - количество наблюдении во второй выборке.

9. По Табл. XI Приложения 1 определить, какому уровню статистической зна­чимости соответствует полученное значение λ.

Если λ эмп > 1,36, различия между распределениями достоверны.

Последовательность выборок может быть выбрана произвольно, так как расхождения между ними оцениваются по абсолютной величине разностей. В нашем случае первой будем считать отечественную выбор­ку, второй - выборку Клара.

Таблица 4.19

Расчет критерия при сопоставлении эмпирических распределений

желтого цвета в отечественной выборке (n1=102)

и выборке Клара (п2 =: 800)

Позиция желтого цвета

Эмпирические частоты

Эмпирические частости

Накоплены эмпирические частности

Разность

∑ƒ* 1 -∑ƒ* 2

∑ƒ* 1

∑ƒ* 2

Максимальная разность между накопленными эмпирическими частостями составляет 0,118 и падает на второй разряд.

В соответствии с пунктом 8 алгоритма 15 подсчитаем значение λ:

По Табл. XI Приложения 1 определяем уровень статистической
значимости полученного значения: р=0,16:

Построим для наглядности ось значимости.

На оси указаны критические значения λ соответствующие приня­тым уровням значимости: λ 0,05 =1,36, λ 0,01 =1,63.

Зона значимости простирается вправо, от 1,63 и далее, а зона незначимости – влево, от 1,36 к меньшим значениям.

λ эмп < λ кр

Ответ: Но принимается. Эмпирические распределения желтого цвета по 8 позициям в отечественной выборке и выборке X. Клара совпадают. Таким образом, распределения желтого цвета в двух выбор­ках не различаются, но в то же время они по-разному соотносятся с равномерным распределением: у Клара отличий от равномерного рас­пределения не обнаружено, а 8 отечественной выборке различия обна­ружены (р<0,05). Возможно, картину могло бы прояснить применение другого метода?

Е.В. Гублер (1978) предложил сочетать использование критерия λ с критерием φ* (угловое преобразование Фишера).

Об этих возможностях сочетания методов λ и φ* мы поговорим в следующей лекции.

.5. Алгоритм выбора критерия для сравнения распределений

Данный критерий также позволяет оценить существенность различий между двумя выборками, в том числе возможно его применение для

Данный критерий также позволяет оценить существенность различий между двумя выборками, в том числе возможно его применение для сравнения эмпирического распределения с теоретическим.

Критерий позволяет найти точку, в которой сумма накопленных частот расхождений между двумя распределениями является наибольшей, и оценить достоверность этого расхождения. Нулевая гипотеза H 0 ={различия между двумя распределениями недостоверны (судя по точке максимального накопленного расхождения между ними)}.

Схематично алгоритм применения критерия Колмогорова-Смирнова можно представить следующим образом:

Проиллюстрируем использование критерия Колмогорова-Смирнова на примере.

При изучении творческой активности студентов были получены результаты для экспериментальных и контрольных групп (см. таблицу). Являются ли значимыми различия между контрольной и экспериментальной группами?

Уровень усвоения

Частота в экспериментальной группе

Частота в контрольной группе

Хороший

172 чел.

120 чел.

Приблизительный

36 чел.

49 чел.

Плохой

15 чел.

36 чел.

Объём выборки

n 1 =172+36+15=223

n 2 = 120+49+36=205

Вычисляем относительные частоты f , равные частному от деления частот на объём выборки, для двух имеющихся выборок.

В результате исходная таблица примет следующий вид:

Относительная частота экспериментальной группы (f эксп )

Относительная частота контрольной группы (f контр )

Модуль разности частот | f эксп – f контр |

172/223≈ 0.77

120/205≈ 0.59

0.18

36/223≈ 0.16

49/205≈ 0.24

0.08

15/223≈ 0.07

36/205≈ 0.17

Среди полученных модулей разностей относительных частот выбираем наибольший модуль, который обозначается d max . В рассматриваемом примере 0.18>0.1>0.08, поэтому d max =0.18.

Эмпирическое значение критерия λ эмп определяется с помощью формулы:

Чтобы сделать вывод о схожести по рассматриваемому критерию между двумя группами, сравним экспериментальное значение критерия с его критическим значением, определяемым по специальной таблице, исходя из уровня значимости . В качестве нулевой гипотезы примем утверждение о том, что сравниваемые группы незначительно отличаются друг от друга по уровню усвоения. При этом нулевую гипотезу следует принять в том случае, если наблюдаемое значение критерия не превосходит его критического значения.

Считая, что , по таблице определяем критическое значение критерия: λ кр (0,05)=1,36.

Таким образом, λ эмп =1,86>1,36= λ кр. Следовательно, нулевая гипотеза отвергается, и группы по рассмотренному признаку отличаются существенно.

Заметим, что объёмы рассматриваемых выборок должны быть достаточно большими: n 1 ≥50, n 2 ≥50.

Критерий Колмогорова.

На практике кроме критерия часто используется критерий Колмогорова, в котором в качестве меры расхождения между теоретическим и эмпирическим распределениями рассматривают максимальное значение абсолютной величины разности между эмпирической функцией распределения
и соответствующей теоретической функцией распределения

, (1)

называемой статистикой критерия Колмогорова .

Доказано, что какова бы ни была функция распределения
непрерывной случайной величины
, при неограниченном увеличении числа наблюдений вероятность неравенства
стремится к пределу

Задавая уровень значимости
, из соотношения

(3)

можно найти соответствующее критическое значение .

Схема применения критерия Колмогорова следующая:

. (4)

Замечание

Можно отметить, что решение подобных задач можно было бы найти с помощью критерия . Потенциальное преимущества критерия Колмогорова в том, что он не требует группирования данных (с неизбежной потерей информации), а дает возможность рассматривать индивидуальные наблюдаемые значения. Этот критерий можно успешно применять для малых выборок. Считается, что его мощность, вообще говоря, выше, чем у критерия .

Пример Получена случайная выборка объема
. Построим вариационный ряд и эмпирическую функцию распределения:

Проверим гипотезу, что эти наблюдения образуют случайную выборку из распределения
с уровнем значимости
. Затем мы можем определить
графически либо аналитически, причем эти значения должны появиться в точке , соответствующей одной из наблюдаемых величин. С этой целью необходимо вычислить пары величин и (см. рис. 1) для каждого значения выборки.

Для вычисления вспомним: , где - функция стандартного нормального распределения. Результаты всех вычислений представим в виде таблицы:

Из таблицы результатов следует: . Из статистических таблиц получим
. Поскольку
, то принимается гипотеза
, т.е. можно считать, что данные подчиняются распределению .

Проверка гипотез об однородности выборок

Гипотезы об однородности выборок – это гипотезы о том, что рассматриваемые выборки извлечены из одной и той же генеральной совокупности.

Пусть имеются две независимые выборки, произведенные из генеральных совокупностей с неизвестными теоретическими функциями распределения
и
.

Проверяемая нулевая гипотеза имеет вид
против конкурирующей
. Будем предполагать, что функции и непрерывны.

Критерий Колмогорова-Смирнова использует ту же самую идею, что и критерий Колмогорова, но только в критерии Колмогорова сравнивается эмпирическая функция распределения с теоретической, а в критерии Колмогорова-Смирнова сравниваются две эмпирические функции распределения.

Статистика критерия Колмогорова-Смирнова имеет вид:

,

где
и
– эмпирические функции распределения, построенные по двум выборкам c объемами и . отвергается на уровне значимости , если фактически наблюдаемое значение больше критического , т.е.
, и принимается в противном случае.

Критерий Колмогорова-Смирнова в программе STATISTICA в среде Windows

Пример основан на исследовании агрессивности четырехлетних мальчиков и девочек (Siegel, S. (1956) Nonparametric statistics for the behavioral sciences (2nded.) New York: McGraw-Hill). Данные содержатся в файле Aggressn.sta.

Двенадцать мальчиков и двенадцать девочек наблюдались в течение 15-минутной игры; агрессивность каждого ребенка оценивалась в баллах (в терминах частоты и степени проявления агрессивности) и суммировалась в один индекс агрессивности, который вычислялся для каждого ребенка.

Задание анализа . Выберите Nonparametrics из меню Statistics. Затем выберете Comparing two independent samples (groups). Появится диалоговое окно Comparing Two Groups . Нажмите на кнопку Variables . Здесь выберете переменную variable Aggressn в Dependent variable list и переменную Gender в Indep . (grouping ) variable . Коды для однозначного отнесения каждого наблюдения к определенному полу будут автоматически выбраны программой.

Как видно из таблицы результатов, различие между агрессивностью мальчиков и девочек в этом исследовании высокозначимо.

​ Критерий Колмогорова-Смирнова – непараметрический критерий согласия, в классическом понимании предназначен для проверки простых гипотез о принадлежности анализируемой выборки некоторому известному закону распределения. Наиболее известно применение данного критерия для проверки исследуемых совокупностей на нормальность распределения .

1. История разработки критерия Колмогорова-Смирнова

Критерий Колмогорова-Смирнова был разработан советскими математиками Андреем Николаевичем Колмогоровым и Николаем Васильевичем Смирновым .
Колмогоров А.Н. (1903-1987) - Герой Социалистического Труда, профессор Московского государственного университета, академик АН СССР - крупнейший математик XX века, является одним из основоположников современной теории вероятности.
Смирнов Н.В. (1900-1966)- член-корреспондент АН СССР, один из создателей непараметрических методов математической статистики и теории предельных распределений порядковых статистик.

Впоследствии критерий согласия Колмогорова-Смирнова был доработан с целью применения для проверки совокупностей на нормальность распределения американским статистиком, профессором Университета Джорджа Вашингтона Хьюбертом Лиллиефорсом (Hubert Whitman Lilliefors, 1928-2008). Профессор Лиллиефорс являлся одним из пионеров применения компьютерной техники в статистических расчётах.

Хьюберт Лиллиефорс

2. Для чего используется критерий Колмогорова-Смирнова?

Данный критерий позволяет оценить существенность различий между распределениями двух выборок, в том числе возможно его применение для оценки соответствия распределения исследуемой выборки закону нормального распределения.

3. В каких случаях можно использовать критерий Колмогорова-Смирнова?

Критерий Колмогорова-Смирнова предназначен для проверки совокупностей данных, измеренных в количественной шкале .

Для большей достоверности полученных данных объемы рассматриваемых выборок должен быть достаточно большими: n ≥ 50. При размерах оцениваемой совокупности от 25 до 50 элементов, целесообразно применение поправки Большева.

4. Как рассчитать критерий Колмогорова-Смирнова?

Критерий Колмогорова-Смирнова рассчитывается при помощи специальных статистических программ. В основе лежит статистика вида:

где sup S - точная верхняя грань множества S, F n - функция распределения исследуемой совокупности, F(x) - функция нормального распределения

Выводимые значения вероятности основаны на предположении, что среднее и стандартное отклонение нормального распределения известны априори и не оцениваются из данных.

Однако на практике обычно параметры вычисляются непосредственно из данных. В этом случае критерий нормальности включает сложную гипотезу ("насколько вероятно получить D статистику данной или большей значимости, зависящей от среднего и стандартного отклонения, вычисленных из данных"), и приводятся вероятности Лиллиефорса (Lilliefors, 1967).

5. Как интерпретировать значение критерия Колмогорова-Смирнова?

Если D статистика Колмогорова-Смирнова значима, то гипотеза о том, что соответствующее распределение нормально, должна быть отвергнута.

Описание критерия

Классический критерий Колмогорова (иногда говорят Колмогорова-Смирнова) предназначен для проверки простых гипотез о принадлежности анализируемой выборки некоторому полностью известному закону распределения.

Пусть - выборка независимых одинаково распределённых случайных величин, - эмпирическая функция распределения , - некоторая "истинная" функция распределения с известными параметрами. Статистика критерия определяется выражением:

Обозначим через гипотезу о том, что выборка подчиняется распределению . Тогда по теореме Колмогорова при справедливости проверяемой гипотезы:

0:%20%5Cquad%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7DP(%5Csqrt%7Bn%7D%20D_n%20%5Cleq%20t)=K(t)=%5Csum_%7Bj=-%5Cinfty%7D%5E%7B+%5Cinfty%7D(-1)%5Ej%20%5Cmathrm%7Be%7D%5E%7B-2j%5E2t%5E2%7D." alt="\forall t>0: \quad \lim_{n \to \infty}P(\sqrt{n} D_n \leq t)=K(t)=\sum_{j=-\infty}^{+\infty}(-1)^j \mathrm{e}^{-2j^2t^2}.">

Гипотеза отвергается, если статистика превышает квантиль распределения заданного уровня значимости , и принимается в противном случае.

Примечание: В критерии Колмогорова целесообразно использовать статистику с поправкой Большева: . Распределение этой статистики при справедливости проверяемой гипотезы быстро сходится к распределению Колмогорова и при 25%20" alt=" n>25 "> зависимостью от объема выборки можно пренебречь.

Использование критерия для проверки нормальности

В данном случае критерий Колмогорова используется для проверки гипотезы о принадлежности наблюдаемой выборки нормальному закону, параметры которого оцениваются по этой самой выборке методом максимального правдоподобия. То есть, проверяется сложная гипотеза и в качестве оценок параметров нормального закона используются выборочные оценки среднего и дисперсии.

В этом случае (Lilliefors) использовались модифицированные статистики вида:

.

Критические значения для статистики приведены в следующей таблице (Lilliefors):

0,15 0,10 0,05 0,03 0,01
0,775 0,819 0,895 0,955 1,035

Проверка сложных гипотез

При проверке сложных гипотез, когда по выборке оцениваются параметры закона, с которым проверяется согласие, непараметрические критерии согласия теряют свойство свободы от распределения (Kac, Kiefer, Wolfowitz). При проверке сложных гипотез условные распределения статистик непараметрических критериев согласия (и критерия Колмогорова) зависят от ряда факторов: от вида наблюдаемого закона, соответствующего справедливой проверяемой гипотезе; от типа оцениваемого параметра и числа оцениваемых параметров; в некоторых случаях от конкретного значения параметра (например, в случае семейств гамма- и бета-распределений); от метода оценивания параметров.

Различия в предельных распределениях той же самой статистики при проверке простых и сложных гипотез настолько существенны, что пренебрегать этим ни коем случае нельзя.

О применении критерия Колмогорова для проверки различных сложных гипотез см. на сайте Новосибирского государственного технического университета:

  • Статистический анализ данных, моделирование и исследование вероятностных закономерностей. Компьютерный подход: монография. – Новосибирск: Изд-во НГТУ, 2011. – 888 с. (главы 3 и 4)
  • Модели распределений статистик непараметрических критериев согласия при проверке сложных гипотез с использованием оценок максимального правдоподобия. Ч.I // Измерительная техника. 2009. № 6. – С.3-11.
  • Модели распределений статистик непараметрических критериев согласия при проверке сложных гипотез с использованием оценок максимального правдоподобия. Ч.II // Измерительная техника. 2009. № 8. – С.17-26.

Литература

  1. Kolmogoroff A.N. Sulla determinazione empirica di una legge di distribuzione // Giornale dell` Istituto Italiano degly Attuari. 1933. – Vol. 4. – № 1. – P. 83-91.
  2. Большев Л.Н., Смирнов Н.В. Таблицы математической статитики. М.: Наука, 1983.
  3. Lilliefors H.W. On the Kolmogorov-Smirnov test for normality with mean and variance unknown // J. Am. Statist. Assoc., 1967. V.62. – P.399-402.
  4. Kac M., Kiefer J., Wolfowitz J. On Tests of Normality and Other Tests of Goodness of Fit Based on Distance Methods // Ann. Math. Stat., 1955. V.26. – P.189-211.
  5. Рекомендации по стандартизации. Прикладная статистика. Правила проверки согласия опытного распределения с теоретическим. Часть II. Непараметрические критерии. – М.: Изд-во стандартов. 2002. – 64 с.