Методы цитологии. Клеточная теория. Основные положения клеточной теории - постулаты единства всего живого Примеры критики постулатов клеточной теории

Впервые клетки, а точнее клеточные стенки (оболочки) мертвых клеток, были обнаружены в срезах пробки с помощью микроскопа, английским ученым Робертом Гуком в 1665 году. Именно он и предложил термин «клетка».
Позднее голландец А. Ван Левенгук открыл множество одноклеточных организмов в каплях воды, а в крови людей красные кровяные клетки (эритроциты).

То, что помимо клеточной оболочки все живые клетки имеют внутреннее содержимое полужидкое студенистое вещество, ученые смогли открыть только только в начале XIX века. Это полужидкое студенистое вещество назвали протоплазмой. В 1831 году было открыто клеточное ядро, и все живое содержимое клетки — протоплазму стали подразделять на ядро и цитоплазму.

Позднее по мере совершенствования техники микроскопии в цитоплазме были обнаружены многочисленные органоиды (слово «органоид» имеет греческие корни и означает «похожий на орган»), и цитоплазму стали подразделять на органоиды и жидкую часть — гиалоплазму.

Известные немецкие ученые ботаник Матиас Шлейден и зоолог Теодор Шванн, активно работавшие с клетками растений и животных, пришли к выводу, что все клетки имеют похожее строение и состоят из ядра, органоидов и гиалоплазмы. Позднее в 1838-1839 г. они сформулировали основные положения клеточной теории . Согласно этой теории клетка является основной структурной единицей всех живых организмов, как растительных, так и животных, а процесс роста организмов и тканей обеспечивается процессом образования новых клеток.

Через 20 лет немецким анатомом Рудольфом Вирховым было сделано еще одно важное обобщение: новая клетка может возникнуть только из предшествующей клетки. Когда выяснелось, что сперматозоид и яйцеклетка — тоже клетки, соединяющиеся друг с другом в процессе оплодотворения, стало понятно, что жизнь из поколения в поколение — это непрерывная последовательность клеток. По мере развития биологии и открытия процессов деления клеток (митоза и мейоза) клеточная теория дополнялась все новыми положениями. В современном виде основные положения клеточной теории можно сформулировать так:

1. Клетка — основная структурно-функциональная и генетическая единица всех живых организмов и наименьшая единица живого.

Этот постулат был полностью доказан современной цитологией. Кроме того, клетка представляет собой открытую для обмена с внешней средой, саморегулирующуюся и самовоспроизводящуюся систему.

В настоящее время ученые научились выделять различные компоненты клетки (вплоть до отдельных молекул). Многие из этих компонентов могут даже функционировать самостоятельно, если создать им соответствующие условия. Так, например, сокращения актино-миозинового комплекса может быть вызвано добавлением в пробирку АТФ. Искусственный синтез белов и нуклеиновых кислот тоже стало реальностью в наше время, но все это лишь только части живого. Для полноценной работы всех этих комплексов, входящих в состав клетки, нужны еще дополнительные вещества, ферменты, энергия и т.д. И только клетки являются самостоятельными и саморегулирующимися системами, т.к. имеют все необходимое для поддержания полноценной жизнедеятельности.

2. Строение клеток, их химический состав и основные проявления процессов жизнедеятельности сходны у всех живых организмов (одноклеточных и многоклеточных).

В природе существует два типа клеток: прокариотические и эукариотические. Несмотря на их некоторые различия это правило для них справедливо.
Общий принцип организации клеток определяется необходимостью осуществить ряд обязательных функций, направленных на поддержание жизнедеятельности самих клеток. Например, у всех клеток есть оболочка, которая с одной стороны изолируюет ее содержимое от окружающей среды, с другой — контролирует поток веществ в клетку и из нее.

Органоиды или органеллы — постоянные специализированные структуры в клетках живых организмов. Органоиды разных организмов имеют общий план строения и работают по единым механизмам. Каждый органоид отвечает за определенные функции, которые жизненно необходимы для клетки. Благодаря органоидам в клетках происходит энергетический обмен, биосинтез белка, появляется способность к воспроизводству. Органоиды стали сопоставлять с органами многоклеточного организма, отсюда и появился этот термин.

У многоклеточных организмов хорошо прослеживается значительное разнообразие клеток, которое связано с их функциональной специализацией. Если сравнить, например, мышечные и эпительные клетки, можно заметить, что они отличаются друг от друга преимущественным развитием разных видов органоидов. Клетки приобретают черты функциональной специализации, которые необходимы для выполнения конкретных функций, в результате клеточной дифференцировки в процессе онтогенеза.

3. Любая новая клетка может образоваться только в результате деления материнской клетки.

Размножение клеток (т.е. увеличение их количества) будь то прокариоты или эукариоты может происходить только делением уже существующих клеток. Делению обязательно предшествует процесс предварительного удвоения генетического материала (репликация ДНК). Началом жизни организма является оплодотворенная яйцеклетка (зигота), т.е. клетка образующаяся в результате слияния яйцеклетки и сперматозоида. Все остальное разнообразие клеток в организме — результат бесчисленного числа ее делений. Таким образом, можно сказать, что все клетки в организме родственны, развиваются одинаковым образом из одного источника.

4. Многоклеточные организмы — живые организмы, состоящие из множества клеток. Большая часть этих клеток дифференцирована, т.е. различаются по своему строению, выполняемым функциям и образуют различные ткани.

Многоклеточные организмы — это целостные системы специализированных клеток, регулируемыми межклеточными, нервными и гуморальными механизмами. Следует различать многоклеточность и колониальность. У колониальных организмов нет дифференцированных клеток, а следовательно, нет разделения тела на ткани. В многоклеточные организмы помимо клеток входят еще неклеточные элементы, например, межклеточное вещество соединительной ткани, костный матрикс, плазма крови.

В итоге можно сказать, что вся жизнедеятельность организмов от их рождения до смерти: наследственность, рост, обмен веществ, болезни, старение и т.п. — все это многообразные аспекты деятельности различных клеток организма.

Клеточная теория оказала огромное влияние на развитие не только биологии, но и естествознания в целом, так как она установила морфологическую основу единства всех живых организмов, дала общебиологическое объяснение жизненных явлений. По своему значению, клеточная теория не уступает таким выдающимся достижениям науки, как закон превращения энергии или эволюционная теория Ч. Дарвина. Итак, клетка — основа организации представителей царств растений, грибов и животных — возникла и развивалась в процессе биологической эволюции.

Все живое состоит из клеток (кроме вирусов) клетка элементарная единица жизни, вне клетки жизнь не возможна.

Клетки всех организмов гомологичны в постороении, имеют общее происхождение и общие принципы строения. Основу клеток составляют белки, от которых зависит ход всех внутреклеочных поцессовю их строеие закадировано в днк, основные жизненоважные процессы в клетке: размножение, синтез белка, получение и пеедача эпергии имеют общую биохимическую природу.

Размножение клеток осуществлеяется только путем деления уже существующих (постулат Вирхова).

Многоклеточный организм сложный комплекс дифференцированных в различных органах и тканях клеток, согласованное функционирование которых осуществляется под управлением надклеточных гуморальных и нервных систем.

Все клетки многоклеточного оргаизма тотипотентны (это означает- клетка организма имеет полный набор игформации по строению всего организма, эта информация закадирована в днк, что сведетельствует о наличие принципиальной возможности вырастить из одной клетки точную копию оргназма, тоесть кланировать организм.

Каждая клетка состоит из ядра и цитоплазмы ограничевающей ее от окружающей среды и соседних клеток, пространство между мембраннами соседних клеток заполнено жидким содержимым- межклеточным веществом. Главная функция мембраны изберательная проницаймость. Большинство мембран эукаритеческой клетки в том числе цитоплазматическая (цпм) мембранапостроены по сходному принципу в их состав входят два слоя фосфолюпидов (являются эфиром глицирина, двумя остатками кислот и одна н группа заменина на фосфаты, в итоге каждая молекула фосфолюпидов имеют гидрофильную головку и два гидрофобных хвоста.

Благодаря своим свойствам гидрофильные головки обращены наружу к окружающей среде. Гидрофобные хвосты обращены внутрь билипидного слоя. Структура мембраны поддерживается. В билиптидный слой встроены комплексы различных белков, которые удерживаются внем за счет гидрофобного взаимодействия. Эти белки могут пронизовать мембрану на сквозь или встраиваться в нее с одеой стороны, они выполняют рецепторные и транспортные функции. С наружной стороны в билиптидном слое заякоренны молекулы разветленны полисахаридов.

Молекулы разветленных полисахаридов образуют гликокаликс. Он участвует в рецепторной функции то есть в опознание клеткой пищевых субстратов необходимых молекул, пренадзначеных для транспортов в клетку, а также в опознание клеток друг друга и плотного клеточного вещества. Эти молекулы встроенных белков могут перемещаться по мембране.

Одно из самых важных свойств клеточных мембран это клеточная замыкаймость.

ЦПМ - является самой толстой клеткой, так как несет защтитную функцию и выполряет множество других.

Цитоплазма - вязкое, полужидкое содержимое клетки. Содержит белковые фибриллы (нити белка), растворенные ионы металлов и кислот (солей), ферменты, моносахариды...

КЛЕТОЧНЫЙ ЦЕНТР - не мембранный органоид, структура состоящая из двух взаимноперпендикулярных целиндров образованных 9 триплетами микротрубочек. Функция - участвуют в образовании веретена деления и располагаются возле ядра.

РЕСНИЧКИ И ЖГУТИКИ - построены из микротрубочек в состав которых входит белок тубулин, представляют собой вырасты цитоплазмы на поверхности клетки. Способны к движению. Функция- движение клетки.

ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ (ЭПС) - различают два типа гладкую и гранулярную. Функции гранулярной эпс - синтез белков, находиться непосредственно в близости от ядра, в нее переходит калеолемма. На гранулярной эпс с помощью белковый фебрил закреплено большое колличесто рибосом под микроскопом она преобретает вид неоднородной бугристой из-за чего и получила свое название. Функции гладкая эпс - синтез гликопротеидов, липидов, постобработка (процессинг) белков. ЭПС представляет собой совокупность каналов, цистерн, пузырьков мембраны.

АППАРАТ (КОМПЛЕК) ГОЛЬДЖИ ИЛИ ЕЩЕ НАЗЫВАЕТСЯ ЕЩЕ ДИКТИОСОМА - совокупность мембран и цистерн недолеко от ядра. Функция его- состоит в запасании продуктов синтеза клетки.

ПЛАСТИДЫ - представляют собой двухмембранный полуавтономный органойд присутствующий в растительных клетках, разделяют несколько типов: хлоропласт (зеленые), функция его фотосинтез. Имеют наружную мембрану и внутреннюю мембрану в виде трубочек, которые называются ломеллы, мембранные мешки - тилокоиды, которые образуют стопки- граны.

Хромопласты содержат желтые и красные сигменты такие как коротинойды, фукосатины, ксантофиллы (желтые), фикоэлитрины (красные).

Лейкопласты (бесцветные) содержат крахмальные зерна и пр. Функция - запас питательных веществ.

Основные постулаты клеточной теории

1. Всё живое состоит из клеток. Клетка – элементарная единица жизни. Вне клеток жизнь не существует.

2. Клетки всех организмов гомологичны по строению, т.е. имеют общее происхождение и общие принципы строения. Основу клеток составляют белки, управляющие ходом всех процессов в клетке. Строение белков закодировано в молекулах ДНК. Основные жизненно важные процессы в клетках (размножение, синтез белка, получение и использование энергии) имеют общую биохимическую основу.

3. Размножение клеток осуществляется только путём деления существующих (постулат Р. Вирхова)

4. Многоклеточные организмы – это сложные комплексы клеток, дифференцированных в различные ткани и органы, согласованное функционирование которых осуществляется под управлением надклеточных гуморальной и нервной систем регуляции.

5. Все клетки многоклеточного организма тотипотентны . Это означает, что каждая клетка организма имеет полный набор информации о строении всего организма (закодированное в ДНК строение всех белков). Тотипотентность свидетельствует о наличии потенциальной (принципиальной) возможности вырастить точную копию организма из одной клетки. Такой процесс называется клонированием.

Клонирование достаточно легко реализуется у растений, которые могут быть выращены из клетки в пробирке с питательной средой и добавлением гормонов. Клонирование животных из-за очень сложных взаимоотношений эмбриона с материнским организмом пока не может быть осуществлено вне организма, поэтому является очень сложной, трудоёмкой и дорогостоящей процедурой с большой вероятностью нарушений в развитии организма.

Все известные клетки принято делить на прокариотов и эукариотов. Прокаритными являются более древние по происхождению и примитивно устроенные клетки. Основным их отличием является отсутствие ядра - специального мембранного органоида, в котором хранится ДНК у эукариотных клеток. Прокариотными клетками являются только бактерии, которые в большинстве случаев представлены одноклеточными и, реже, нитчатыми организмами из клеток, соединённых цепочку. К прокариотам относят также сине-зелёные водоросли, или цианобактерии. В большинстве случаев клетки бактерий по своим размерам не превышают нескольких микрометров, и не имеют сложных мембранных органоидов. Генетическая информация обычно сосредоточена в одной кольцевой молекуле ДНК, которая расположена в цитоплазме и имеет одну точку начала и окончания редупликации. Этой точкой ДНК закреплена на внутренней поверхности плазмалеммы , ограничивающей клетку. Цитоплазмой называют всё внутреннее содержимое клетки.

Все остальные клетки, от одноклеточных организмов до многоклеточных грибов, растений и животных, являются эукариотными (ядерными). ДНК этих клеток представлена различным количеством отдельных не кольцевых (имеющих два конца) молекул. Молекулы связаны с особыми белками – гистонами и образуют палочковидные структуры – хромосомы, хранящиеся в ядре в изолированном от цитоплазмы состоянии. Клетки эукариотных организмов более крупные и имеют в цитоплазме помимо ядра множество разнообразных мембранных органоидов сложного строения.

Основной отличительной чертой клеток растений является наличие особых органоидов – хлоропластов с зелёным пигментом хлорофиллом , за счёт которого осуществляется фотосинтез с использованием энергии света. Растительные клетки обычно имеют толстую и прочную клеточную стенку из многослойной целлюлозы, которая формируется клеткой за пределами плазмалеммы и является неактивной клеточной структурой. Такая стенка обусловливает постоянную форму клеток и невозможность их перемещения из одной части организма в другую. Характерной особенностью растительных клеток является наличие центральной вакуоли – очень крупной мембранной ёмкости, занимающей до 80-90 % объёма клетки и заполненной клеточным соком, находящимся под большим давлением. Запасным питательным веществом растительных клеток является полисахарид крахмал. Обычные размеры растительных клеток составляют от нескольких десятков до нескольких сотен микрометров.

Клетки животных обычно мельче растительных, имеют размеры около 10-20 мкм, не имеют клеточной стенки, и многие из них могут менять свою форму. Изменчивость формы позволяет им перемещаться из одной части многоклеточного организма в другую. Особенно легко и быстро перемещаются в водной среде одноклеточные животные (простейшие). Клетки отделены от окружающей среды только клеточной мембраной, которая в особых случаях имеет дополнительные структурные элементы, особенно у простейших. Отсутствие клеточной стенки позволяет использовать, помимо всасывания молекул, и процесс фагоцитоза (захват крупных нерастворимых частиц) (см. п.3.11). Энергию животные клетки получают только в процессе дыхания, окисляя готовые органические соединения. Запасным питательным продуктом является полисахарид гликоген.

Клетки грибов имеют общие свойства как с растениями, так и с животными. С растениями их сближает относительная неподвижность и наличие жёсткой клеточной стенки. Поглощение веществ осуществляется так же, как и у растений, только всасыванием отдельных молекул. Общими чертами с животными клетками является гетеротрофный способ питания готовыми органическими веществами, гликоген в качестве запасного питательного вещества, использование хитина, который входит в состав клеточных стенок.

Неклеточными формами жизни являются вирусы . В простейшем случае вирус представляет собой одну молекулу ДНК, заключённую в оболочку из белка, строение которого закодировано в этой ДНК. Такое примитивное устройство не позволяет считать вирусы самостоятельными организмами, поскольку они не в состоянии самостоятельно двигаться, питаться и размножаться. Все эти функции вирус может осуществлять только попав в клетку. Оказавшись в клетке, вирусная ДНК встраивается в ДНК клетки, многократно размножается клеточной системой редупликации с последующим синтезом вирусного белка. Через несколько часов клетка заполняется тысячами готовых вирусов и погибает в результате быстрого истощения. Освободившиеся вирусы получают возможность инфицировать новые клетки.

3.11. Упорядоченность процессов в клетке
и биологические мембраны

Основное отличие жизни – это строгий порядок протекания химических процессов в клетке. Этот порядок в значительной степени обеспечивается такими клеточными структурами, как биологические мембраны .

Мембраны представляют собой тонкие (6-10 нм) слои упорядоченно расположенных молекул. Анализ химического состава мембран показывает, что их вещество представлено преимущественно белками (50-60 %) и липидами (40-50 %). Полярная глицериновая часть липидных молекул (на рис.3.5 изображена в виде овалов) является гидрофильной и всегда стремится повернуться в сторону молекул воды.

Рис.3.5. Схема жидкостно-мозаичного строения биологической мембраны (заштрихованы гидрофоб­ные части белковых молекул)

Длинные углеводородные цепи жирных кислот, наоборот, будучи гидрофобными, выталкиваются из воды, и им ничего не остаётся, как повернуться навстречу друг другу. Поэтому в водных растворах при наличии достаточного количества липидных молекул они самосборкой укладываются в билипидный слой. Самосборка означает, что перемещение молекул происходит исключительно за счёт диффузионных процессов, без участия ферментов и без затрат биохимической энергии АТФ.

Билипидный слой представляет собой жидкокристаллическую структуру, обеспечивающую строгий порядок расположения молекул, одновременно с возможностью свободного их перемещения, как в жидкости, в пределах одного липидного слоя. Переместиться в другой слой молекула липида не может, поскольку для этого надо протащить гидрофильную часть через толстый гидрофобный слой.

Белки встраиваются в билипидный слой различными способами (мозаично), в зависимости от распределения гидрофобных (на рис.3.5 заштрихованы) и гидрофильных участков. Целиком гидрофильные белки (1) оказываются связанными с гидрофильной поверхностью мембраны. Целиком гидрофобные (2) – оказываются внутри гидрофобного слоя. Белки, имеющие гидрофобные и гидрофильные участки (3,4), размещаются так, что гидрофобные зоны располагаются внутри билипидного слоя, а гидрофильные – снаружи.

Белки с гидрофильно-гидрофобными свойствами (3,4) являются неподвижными и сохраняют строгий порядок расположения в мембране. Целиком гидрофильные (1) или гидрофобные (2) белки, напротив, относительно подвижны и могут служить связующими элементами между неподвижными белками.

Мембраны делят клетку на отдельные зоны (компартменты ), не позволяя смешиваться растворам разного химического состава, формируют мембранные органоиды с различными функциями. Эти функции определяются составом ферментов (см. п. 3.6), встроенных в мембрану органоида. Строгий порядок расположения ферментов в мембране обеспечивает заданную последовательность превращения молекул. Взаимодействие мембранных органоидов обеспечивается встроенными в мембраны рецепторными белками, которые распознают тип контактирующей мембраны и инициируют необходимые в данной ситуации химические и физические превращения.

Мембранными органоидами клетки являются ядро, митохондрии, пластиды растительных клеток, различные вакуоли, аппарат Гольджи и эндоплазматическая сеть, представляющая собой сложную систему полостей и каналов, в разных частях которой происходят различные химические процессы, связанные как с синтезом, так и с деструкцией различных молекул.

Одной из основных функций мембран в клетке является транспорт веществ. Различают активный и пассивный транспорт.

Пассивный транспорт происходит без затрат энергии АТФ. Используется энергия теплового движения молекул. Направление транспорта клеткой не регулируется. Молекулы перемещаются по закону диффузии, из области с высокой концентрацией в область с низкой концентрацией (против градиента концентрации). Различают простую диффузию, диффузию через поры и облегченную диффузию.

Простой диффузией через мембрану могут транспортироваться только гидрофобные молекулы, хорошо растворимые в жирах, или очень мелкие молекулы, движущиеся с большой скоростью (различные газы) (рис.3.6).

Гидрофильные молекулы могут перемещаться диффузией через поры , которые представляют собой участки мембраны с прерыванием билипидного слоя. Таким образом, например, в клетку и из клетки транспортируется вода. Движение молекул растворителя через полупроницаемую мембрану получило название осмос .

Облегченная диффузия осуществляется жирорастворимым белковым переносчиком, на поверхности которого имеется небольшой гидрофильный участок, позволяющий связываться с гидрофильными молекулами. Это позволяет перебрасывать через мембрану молекулы, которые не могут самостоятельно преодолеть билипидный слой.

Активный транспорт осуществляется с затратой энергии АТФ и может идти как против, так и по градиенту концентрации. Каждый вид молекул или ионов, активно транспортируемых в клетку или из клетки, имеет свой собственный белковый переносчик. Большинство переносчиков производят транспортировку за счет энергии мембранного электрического потенциала. Этот потенциал создаётся сложными белковыми комплексами (около 20 белков), получившими название АТФ-азы . Эти комплексы способны расщеплять АТФ на аденозиндифосфорную кислоту (АДФ) и фосфат. При этом выделяющаяся энергия макроэргической связи (см. п.3.7) так конформирует белки АТФ-азного комплекса, что они перебрасывают положительно заряженные ионы (Н + или Nа +) с внутренней стороны мембраны на внешнюю. Таким образом, с внутренней стороны образуется избыток отрицательных ионов (ОН¯, Cl¯, SO 4 2-), а снаружи – положительных.

Средняя величина мамбранного потенциала (около 80 мВ) является важнейшим показателем нормального состояния клеток. Уменьшение этого потенциала свидетельствует о неблагополучном состоянии клетки, а его отсутствие означает смерть. За счёт энергии мембранного потенциала клетка производит самые различные виды работ, в том числе и активный транспорт веществ. Белковые переносчики, осуществляющие активный транспорт, устроены так, что в местах их встраивания в мембрану катионы под действием электрического поля могут проскочить обратно. При этом энергия проскока используется конформирующимися белками для переброски соответствующей молекулы или иона.

Самым сложным видом активного транспорта является фагоцитоз . С его помощью транспортируются крупные частицы и агрегаты молекул. В фагоцитозе участвуют большие участки мембраны и тысячи молекул, среди которых есть рецепторные белки. Эти белки при контакте мембраны с частицей запускают сложную цепочку взаимодействий и перестройки мембраны таким образом, что частица окружается мембраной и оказывается внутри клетки (рис.3.6). Такое поступление в клетку называется эндоцитозом . Аналогичным образом скопление ненужных отходов может быть выброшено из клетки наружу (экзоцитоз) . Фагоцитоз протекает с затратами большого количества молекул АТФ.

Механистическое направление в развитии клеточной теории не могло не привести к разрыву с фактами, к неизбежной при механистическом подходе схематизации явлений.

Отдельным исследователям этот разрыв теории и практики повседневных наблюдений бросался в глаза уже в конце прошлого столетия, но, не имея четкой методологической позиции, исходя подчас из тех же механистических установок, критики клеточного учения далеко не всегда направляли свои замечания в правильную сторону. Сразу же нужно отметить, что «фронт» критиков клеточной теории не однороден, крайне различны и исходные установки, на основе которых высказывалась эта критика.

Одну из ранних попыток критики клеточной теории мы находим в работах русского врача Д. Н. Кавальского (1831-?). Помимо практической работы, Кавальский в 1859-1860 гг. работал за границей в ряде лабораторий (в частности у Рейхерта) и интересовался теоретическими вопросами гистологии и эмбриологии. В печати он выступил в 1855 г. с виталистической статьей о значении клетки у здорового и больного организма. В диссертации под названием «Яйцо и клеточка» Д. И. Кавальский (1863) критикует теорию клеткообразования Шванна, он, однако, сохраняет понятие «бластемы», которая, считает он, может существовать вне клеточной формы. Отказываясь видеть преемственность ядер в развитии зародыша, Д. Н. Кавальский выступает предшественником защищавшей те же идеи в наше время О. Б. Лепешинской; понятие бластемы у Кавальского близко к «живому веществу», о котором говорила О. Б. Лепешинская. Отсутствие серьезных фактов и неясность хода мысли автора обрекли работу Кавальского на забвение. Она нигде не цитировалась и не сыграла никакой роли в развитии учения о клетке.

Английский философ Спенсер (Herbert Spencer, 1820-1903) в 1864 г. и «Основах биологии» говорил об ограничениях, с которыми должна приниматься клеточная теория. «Учение, что все организмы построены из клеточек или что клеточки суть те элементы, из которых образуется каждая ткань, только приблизительно верно», - писал Спенсер. Но в представлениях Спенсера нет конкретного содержания; как и Кавальский, он говорит о «бесформенной бластеме», которую противопоставляет клеткам. Однако Спенсер понимал ограниченность целлюлярной трактовки организма как колонии клеток. Он подчеркивает, что при возникновении многоклеточных имело место не простое суммирование, а интеграция клеток.

Австрийский анатом Гейцман (Julius Heitzmann, 1847-1922) один из первых противопоставил представлению о расчлененном клеточном строении организма понятие о непрерывном строении протоплазмы. По мнению Гейцмана (1883), расчленение тканей на клетки фактически встречается редко, чаще протоплазма обладает непрерывностью, и в эту нерасчлененную массу протоплазмы вкраплены ядра. Таким образом, Гейцман первым выступил с чисто морфологической критикой клеточной теории. Но, отметая крайний взгляд на организм, установившийся на основе клеточной теории,- организм полностью расчленен на части - клетки, Гейцман впадает в другую крайность, выдвигая антитезу: организм структурно непрерывен и клеточное строение представляет собой исключение. Такой вывод не был решением вопроса, он неоднократно выдвигался позже другими авторами.

Раубер (August Rauber, 1841-1917), прозектор в Лейпциге, позже известный профессор анатомии Юрьевского университета, опубликовал в 1883 г. статью о клеточном учении, показывающую его интерес к теоретической стороне вопроса «В противовес первичной структуре протоплазмы, различные формы внутренних клеточных структур, возникающих позже, должны быть обозначены как вторичные структуры», - писал Раубер. «Целое определяет части в отношении вещества и структуры, формы и величины, положения и сил (питание, деление и т. д.)». Рост организма определен самим яйцом и должен быть охарактеризован, по Рауберу, как «ацеллюлярный» рост. Работа эта прошла незамеченной, а ее автор позже не возвращался к нашей проблеме.

В 1893 г. на зоологическом конгрессе с речью, посвященной «недостаточности клеточной теории развития» выступил американский зоолог Уайтмэн (Whitman, 1842 - 1910), который впервые развил всестороннюю критику клеточной теории как основы учения о развитии. В критике Уайтмэна есть интересные положения. Так, он указывает на неправильное, по его мнению, представление о протистах, возникшее на основе клеточного учения. Уайтмэн приводит ряд примеров независимости функций от клеточного строения органов; например, нефростом остается таким же нефростомом, состоит ли он из одной, двух или нескольких клеток. Клеточная дифференцировка не объясняет процесса развития, и ссылка на клетки не удовлетворяет Уайтмэна. Но отказываясь видеть единицы организма в клетках, Уайтмэн склонен был перенести это понятие на некие «идиосомы». «Секрет организации роста, развития заключается не в клеткообразовании, но в тех последних элементах живой материи, подходящим названием для которых мне кажется термин «идиозомы». Эту попытку переноса «загадки» жизнепроявлений с клеток на гипотетические ультрамикроскопические единицы мы встретим у ряда других исследователей. Такое решение вопроса было кажущимся, оно отодвигало проблему, а не приближало ее разрешение. Но в частностях замечания Уайтмэна заслуживают внимания, и его статью надо считать одним из первых серьезных выступлений критиков клеточной теории.

Вскоре с работой под тем же заголовком выступил английский зоолог Сэджвик (Adam Sedgwick, 1854-1913). В исследованиях над первичнотрахейными (1886) он столкнулся с трудностями целлюлярной трактовки процессов развития. Позднее Сэджвик выступил с общей критикой учения о клетке, защищая положение, что «эмбриональное развитие не может быть рассматриваемо как образование путем деления известного числа единиц из простой первичной единицы и как координация и модификация этих единиц в гармоническое целое. Скорее оно должно быть рассматриваемо как умножение ядер и специализация участков и вакуолей в непрерывной массе вакуолизированной протоплазмы» (1894, стр. 67). В доказательство этого положения Сэджвик рассматривает развитие мезенхимы и нервных стволов у зародышей селяхий. В основном, Сэджвик противопоставляет клеточную структуру непрерывному строению протоплазмы, без анализа их взаимоотношений.

Иной характер носила критика клеточной теории у Сакса (Julius Sachs, 1832-1897). Он понимал трудность применения простой клеточной схемы для физиологического истолкования морфологических структур. В 1878 г., демонстрируя на заседании Вюрцбургского физико-медицинского общества сифонниковые водоросли, Сакс указывал на своеобразие их строения и рассматривал их как неклеточные растения. Позже (1892, 1895), введением понятия об «энергиде», Сакс пытался сделать необходимое, по его мнению, дополнение к клеточной теории. Сакс следующим образом определяет понятие об энергиде: «Под энергидой я понимаю отдельное клеточное ядро с прилежащей к нему протоплазмой, причем ядро и окружающая его протоплазма мыслятся как целое, и это целое есть органическая единица как в морфологическом, так и в физиологическом смысле» (1892, стр. 57). Энергида, считает Сакс, превращается в клетку, когда вокруг энергиды появляется оболочка. Организмы, подобные амёбе, по Саксу, представляют собою голые энергиды.

Понятие об энергиде импонировало многим биологам, оно часто употребляется и в настоящее время некоторыми защитниками ортодоксального клеточного учения (М. Гартман и др.), считающими, что применение его устраняет недостатки клеточного учения и трудности целлюлярного подхода к неклеточным структурам.

В числе критиков клеточной теории этого периода обычно называют Антона де Бари (1879) и приводят его фразу, что не клетки образуют растение, а растение образует клетки. Де Бари не выступал с развернутой критикой клеточного учения, но в редактируемом им ботаническом журнале он поместил рецензию, где, между прочим, писал о «гегемонии» клетки в преподавании ботаники. Де Бари указывал, что со времени Шлейдена (имеются в виду его «Основы ботаники») почти все учебники начинают изложение с клетки, что «было или есть ошибка, которая имеет свое глубокое основание в обоснованной Шлейденом гегемонии клетки, если можно так сказать, в убеждении, что клетка образует растение, а не наоборот - растение образует клетку». Эта фраза по своей выразительности приобрела распространение и часто фигурирует в последующей критике клеточного учения как выражение представления о гегемонии целого над его частями.

На основе клеточной теории укрепилось представление, что многоклеточные растения и животные возникли из колонии одноклеточных, где отдельные особи - клетки утеряли свою самостоятельность и превратились в структурные части многоклеточного организма (Э. Геккель, И. И. Мечников). Французский зоолог Деляж (Yves Delage, 1854-1920) выдвинул новую гипотезу происхождения многоклеточности (1896). По его представлениям, многоклеточные организмы могли образоваться не через колонию протистов, а на основе расчленения тела многоядерного протиста на отдельные одноядерные территории - клетки. Соображения Деляжа находили позже сторонников, на большинство биологов осталось при прежнем представление которое в настоящее время господствует в биологии.

Ряд авторов в конце прошлого столетия и начале текущего выступал с критикой учения о клетке, развивая представление, что клетка не является последней элементарной структурой и существуют жизненные единицы, стоящие ниже клетки. «Идеологом» этого направления явился лейпцигский гистолог Альтман, выступивший с изложением своих взглядов сначала в статье «К истории клеточных теорий» (1889), а на следующий год опубликовавший книгу под названием «Элементарные организмы» (1890). Это не первая попытка постулировать жизненные единицы, стоящие ниже клетки, но умозрительным теориям Альтман пытается дать морфологическое обоснование. Он не возражает против общепринятого толкования клетки. «Является аксиомой биологических воззрений, что всякая органическая жизнь связана с формой клетки, поэтому описание клетки предпосылают везде, где проявляются в полной мере жизненные свойства». Альтман не возражает и против клеточной теории как универсальной схемы строения и развития организма, он лишь настаивает на том, что клетка не является «последней» жизненной единицей и индивидуальностью. «Существует, вероятно, много организованных существ, которые не суть клетки, которые на основании своих свойств эго название утрачивают»,- говорит Альтман. Морфологическую единицу живой материи он видит в «биобластах», которые, как ему казалось, обнаруживаются всюду в составе клеток при применении особой техники обработки ткани. «Поэтому, - пишет он, - биобласты как морфологические единицы в любой материи являются видимыми элементами; как такие единицы они представляют истинные элементарные организмы одушевленного мира». Таким образом, Альтман лишь ставит на место клетки свои биобласты, раздвигает границу органической индивидуальности.

Теория Альтмана опиралась на неправильно интерпретированные факты, но и помимо этого она не отличалась никакими преимуществами по сравнению с клеточной теорией.

Биобласты Альтмана идентифицируются теперь частью с хондриосомами, частью с различными гранулами, но, конечно, никто не пытается придавать им значение жизненных единиц. Теория биобластов пережила своеобразный рецидив в представлениях об «основном аппарате жизни» киевского зоолога М. М. Воскобойникова (1873-1942), который впервые выступил с ними на 3-м Всерос. съезде зоологов, анатомов и гистологов (1928), а затем в развернутой форме изложил свои представления на 4-м съезде в 1930 г.

Герольдом теории биобластов у нас выступил петербургский гистолог Г. Г. Шлатер (1867-1919). В брошюре «Новое направление морфологии клетки и его значение для биологии» (1895), а затем в докторской диссертации о строении печеночной клетки (1898) и в изданном на русском и немецком языках очерке «Клетка, биобласт и живое вещество» (1903) Г. Г. Шлатер настойчиво пропагандирует гранулярную теорию строения клетки, настаивая на том, что клетка не является последним неразложимым морфологическим элементом. В речи, прочитанной на годичном заседании Общества патологов (1910), Г. Г. Шлатер идет, однако, дальше в критической оценке клеточного учения. По-прежнему отстаивая альтмановское направление, Шлатер отмечает неправильное игнорирование живых свойств межклеточного вещества, подчеркивает значение целостности организмов и значение неклеточных состояний тканевых структур в ходе гистогенеза. «Знакомство с гистогенезом ряда тканевых групп заставляет отрешиться от признания возможности проследить преемственность любой тканевой клетки, ибо в ранние периоды гистогенеза границы между отдельными, клетками исчезают, ядра размножаются, происходит ряд перепостроений и перегруппировок разных структурных элементов общей синцитиальной массы. В таких случаях невозможно определить происхождение каждого отдельного клеткоподобного тканевого участка».

В стремлении раздвинуть границы органической индивидуальности Альтман не остался одинок. Ботаник Визнер (Julius Wiesner, 1838-1916) в большой работе «Элементарная структура и рост органического вещества» (1892) также ставит перед собой задачу найти простейшие «элементарные органы». «В качестве последних, как истинные элементарные органы установлены плазомы, последние части тела растения и живых организмов вообще». Плазомы Визнер не берется показать, как Альтман биобласты. Визнер постулирует их существование; он приписывает им основные свойства органического вещества: ассимиляцию, рост и способность размножаться, делением. Воззрения Визнера внесли мало оригинального, но era положение о том, что к числу обязательных свойств органических индивидуальностей относится способность к делению, получило развитие в работах Гейденгайна.

Мы видели, что со времени Вирхова межклеточное вещество признавалось пассивным продуктом выделения клеток, лишенным жизненных свойств, которыми наделяли только клетки. Это представление было подвергнуто впервые решительной критике русским патологом С. М. Лукьяновым (1894, 1897). В речи на 5-м Пироговском съезде общества русских врачей С. М. Лукьянов подвергает критике вирховское представление о межклеточных веществах. Он указывает, что «в построении многоклеточных организмов участвуют не одни только клетки, но и так называемые межклеточные вещества» (1894, стр. 1). «В истинных межклеточных веществах предполагается тот или другой обмен, хотя бы и более ограниченный, чем в клетках» (стр. VII). Поэтому, заявляет автор, «мы полагаем, что многоклеточный животный организм слагается не из пассивной массы и активных клеток, вкрапленных в нее, а из активных клеток и активных же межклеточных веществ» (стр. V). «Приходится, очевидно, заключить, - писал С. М. Лукьянов, - что жить могут не только клетки и что клеточная теория вовсе не сковывает жизни в одних клеточных формах» (стр. XII). Хотя и сейчас точка зрения Вирхова находит защитников, большинство гистологов разделяет мнение, высказанное еще в конце прошлого столетия Лукьяновым.

На грани двух веков М. Д. Лавдовский (1846-1902), профессор гистологии Военно-медицинской академии, пытался атаковать вирховский принцип «всякая клетка из клетки». В 1900 г. он выступил с актовой речью, озаглавленной «Наши понятия о живой клеточке», где резко критиковал представление о преемственности клеточного развития и доказывал возможность клеткообразования из «живого вещества, живой материи», представляющей собою «массу организованного и далее организующегося вещества». Такую материю, в частности, он видел в желтке яйца, который М. Д. Лавдовский рассматривает как формообразовательное вещество. Идеи М. Д. Лавдовского в свое время не встретили отклика из-за неубедительности фактического материала, которым оперировал автор. В наше время эти идеи пыталась воскресить О. Б. Лепешинская.

Не останавливаясь на ряде специальных работ, разбирающих приложимость клеточной теории к отдельным фактам, мы уже за порогом XIX столетия встречаем ряд сочинений, где учение о клетке рассматривается как важная теоретическая проблема и критикуется с разнообразных точек зрения. Характерно, что в большинстве случаев это - произведения авторов, пытавшихся дать общую сводку учения о клетке и в этой попытке приходивших к критике основных понятий клеточной теории.

Одной из первых сводок такого рода является упомянутая уже выше книга отечественного гистолога А. Г Гурвича (1904) - «Морфология и биология клетки». Здесь он развивает ряд положений, к которым возвращается позднее в общем курсе гистологии (1923). По Гурвичу, клеточная теория встречает затруднение уже в том, что одним и тем же понятием обозначаются и яйцо и те структуры, которые в результате дальнейшего развития, специализации и дифференцировки являются производными этого яйца. Спорными положениями А. Г. Гурвич считает следующие вопросы: 1) является ли многоклеточный организм во всех своих свойствах только функцией отдельных элементов - клеток; 2) можно ли полагать, что эти отдельные элементы обладают практически последней независимой изменяемостью; 3) можно ли расценивать протистов как свободно живущие клетки; 4) является ли правомерной сравнимость различных структур, называемых клетками. В критике А. Г Гурвича есть ряд интересных положений, не утративших своего значения. Исходные методологические позиции Гурвича, основанные на сложной виталистической концепции, конечно, не могут быть нами разделены. Здесь, однако, не место вдаваться в их критику.

Интересные мысли о клеточном учении высказаны Оскаром Гертвигом в 1898 г. в его сводке «Клетка и ткани» (в позднейших изданиях «Общая биология»). В разделе «О двояком значении клетки как элементарного организма и как определенной интегрирующей части более сложного высшего организма» Гертвиг разбирает взгляды де Бари, Сакса, Уайтмэна и Раубера. Соглашаясь с ними в частностях, Гертвиг возражает против критики клеточной теории в целом. Гертвиг приходит к следующему заключению: «Ни одна из односторонних точек зрения, - ни крайняя целлюлярная, ни та, которая выражается во взглядах Сакса, Уайтмэна и Раубера, - не может быть названа вполне справедливой и исчерпывающей предмет. Насколько ошибочно, занимаясь клетками, упускать из виду значение целого, от которого все-таки зависят наличность и образ действий отдельной клетки, настолько же ошибочно было бы пытаться объяснить образ действия целого, не обращая при этом в надлежащей мере внимания на его части. Поэтому я думаю, что лозунги «растение образует клетки» и «клетки образуют растение» вовсе не исключают взаимно друг друга. Можно употреблять оба оборота речи, если мы только будем верно понимать отношение, в котором находятся друг к другу клетка как часть и растение как целое. Только это и важно для понимания растительной и животной организации».

Это правильная постановка вопроса; Гертвиг здесь становится на стихийно-диалектическую точку зрения и нащупывает верный путь разрешения проблемы. К сожалению, позже в своей «теории биогенеза» он далеко не всегда последовательно проводит эту точку зрения. Тем не менее представления Гертвига, безусловно, интересны и заслуживают внимания. Однако точка зрения Гертвига о необходимости аналитико-синтетического подхода к организму своевременно не была оценена и не оказала решительного влияния на развитие учения о клетке.

Эпоху составила другая капитальная сводка по учению о клетке - книга Мартина Гейденгайна «Плазма и клетка» (1907), также упоминавшаяся выше. Гейденгайн указывает, что получив еще в 1894 г. предложение написать отдел «Клетка» в анатомическом руководстве Барделебена, он в процессе обработки материала столкнулся с положением, что «не все живое сконцентрировано в клетках», и в самом заглавии книги стремился отразить этот факт. Помимо обстоятельной исторической, части, Гейденгайн вводит в свою книгу главу «К теории клеток и тканей», где решительно выдвигает положение, что «понятие живого вещества имеет более общую природу, чем понятие клетки». Гейденгайн высказывает много ценных замечаний о понятии клетки, не утративших своей актуальности. Книга М. Гейденгайна и ряд его последующих работ сыграли значительную роль в развитии критического отношения к той ортодоксальной форме клеточной теории, в какой она утвердилась к началу нашего столетия. Наряду с этим, собственная теория Гейденгайна, предлагаемая им в замену целлюлярного представления, страдает рядом крупных недостатков, делающих ее неприемлемой с диалектико-материалистических позиций.

Гейденгайна не удовлетворяет «клеточная схема» организации. Он справедливо отмечает, что основным методом клеточной теории является анализ. «Шванновская теория, - пишет он в одной из последних работ, - нуждается в дополнении синтетической теорией тканей, которая должна возвести их с ранга клеточных агрегатов до ранга целлюлярных систем, которые образуются по определенным, формулируемым законам, обусловленным развитием».

Гейденгайн выдвигает новую теорию структуры организма, которую называет «теорией дробности частей тела» (Teilkorpertheorie»). В этой теории он опирается на выдвинутое Визнером положение, что обязательным свойством органической индивидуальности должна быть способность ее к делению (расщеплению). В противоположность клеточной теории, которая принимает единственный структурный элемент - клетку, «теория дробности частей тела принимает морфологические индивидуальности высшего и низшего порядка, располагающиеся в восходящий ряд: каждый высший член происходит из особой комбинации индивидуумов низшего порядка», - так характеризует Гейденгайн основную идею своей теории (1911, стр. 105).

Каков же тот критерий, который определяет, является ли данное образование подобной индивидуальностью? По мнению Гейденгайна, морфологические образования, помещенные в этот ряд, «должны удовлетворять требованию размножаться делением. При этом делимость может быть проявляющейся, реальной, как у клеток, или она может быть представлена как способность к расщеплению (Spaltungsvermogen) зачатка; во всяком случае, она является, по смыслу теории, основным свойством, существеннейшим критерием морфологической индивидуальности, и целое тело должно быть разложимо на системы частей тела низшего и высшего порядка». Подобные морфологические индивидуальности Гейденгайн называет гистомерами, если они представляют собой составную часть высшей системы, и гистосистемами, если они являются комплексом низших образований. Так, ядро, по Гейденгайну, является гистомером по отношению к клетке и гистосистемой по отношению к хромосомам. При этом он различает: целлюлярные, супрацеллюлярные и инфрацеллюлярные гистомеры. К инфрацеллюлярным гистомерам Гейденгайн относит: ядро, хромосомы, хромиоли, центры и центриоли, хлорофильные зерна и их производные, миофибриллы и диски, цитоплазматические волокна, осевые цилиндры и неврофибриллы, хондриосомы и аппарат Гольджи. Целлюлярными гистомерами он называет клетки и их гомологи; супрацеллюлярными - многоклеточные, способные к расщеплению комплексы. Соотношения их он поясняет схемами, где изображает «полное» расчленение клетки и мышцы по принципу теории дробности. Так как Гейденгайн не находит границы делимости у видимых структур, то он принимает, что эта граница лежит в области субмикроскопической структуры. Последняя способная к делению структура, лежащая за пределами нашей видимости, является, с точки зрения Гейденгайна, «основой всего живого» - биологической единицей, для которой он предлагает термин «протомер».

Таким образом, отказывая клетке в понятии биологической единицы, рассматривая ее лишь как ступень организации, как один из многих гистомеров, Гейденгайн за «настоящую» биологическую единицу принимает протомер. «Теория протомеров, или теория элементарной организации», является логическим завершением теории дробности частей тела.

Поскольку способность к расщеплению целлюлярных и инфрацеллюлярных гистомеров меньше нуждалась в доказательствах (здесь можно было опираться на старые факты), Гейденгайн в последующих работах сосредоточил внимание на доказательстве расщепляемости супрацеллюлярных гистомеров - различных органов. Он старается показать, что его теория не только дает возможность анализировать, разлагать структуры, но и обратно, путем синтеза, выводить строение сложного образования из более элементарного. В противоположность клеточной теории, чисто аналитическому учению, Гейденгайн выдвигает свою теорию, как теорию синтетическую; отсюда укрепившееся за нею название «синтезиология» (Synthesiologie).

Такова в общих чертах теория Гейденгайна, предложенная им взамен клеточного учения.

Однако с методологической стороны теория Гейденгайна нас не удовлетворяет. Основным пунктом ее является представление, что наиболее существенной особенностью органических «индивидуальных» структур является их способность к расщеплению (Teilbarkeit). Помимо спорности такого критерия, само понятие «способность к расщеплению» носит у Гейденгайна формальный характер. Деление ядра, расщепление фибрилл, образование «двойников», «тройников» в различных органах - все эти явления Гейденгайн объединяет общим понятием расщепления и из него выводит способность данной структуры к размножению. Однако здесь искусственно соединены разные явления, которые нельзя рассматривать как проявление общего свойства «расщепляемости». Способность к расщеплению известна и в неорганической природе, особенно у так называемых жидких кристаллов. Гейденгайн рассматривает делимость как какую-то внутреннюю, имманентную особенность органических структур, не учитывая их функционального значения и состояния, определяемого суммой внешних и внутренних условий. Поэтому трудно согласиться е критерием индивидуальности, который выдвигает разбираемая теория. Понятие индивидуальности сохраняет у Гейденгайна метафизический характер, хотя введением понятий «гистомер» и «гистосистема» он пытается преодолеть эту метафизичность. Но это ему не удается, поскольку он рассматривает структурность организма как определенный ступенчатый ряд сопряженных, но не вытекающих друг из друга структур.

Понятие биологической единицы, «протомера», помимо его гипотетичности, у Гейденгайна носит тот же метафизический характер, как и в клеточном учении. Продвинув эту единицу из области микроскопических в область субмикроскопических структур, он не преодолевает метафизический характер понятия об органических элементах. Связывая свою теорию с положением о «непрерывности жизни», Гейденгайн считает, что его взгляды обосновывают изречение: omne vivum ex vivo. Тем самым он приходит к разрыву между неорганической и органической природой, считая протомер за особую органическую структуру, не выводимую из неорганической природы. С точки зрения гейденгайновских схем, непонятной остается связь структур между собою. Они образуют, по его теории, обособленные ряды, не связанные друг с другом, не вытекающие один из другого. Поэтому, преодолевая метафизический подход к организму как к сумме частей, пытаясь анализу организма противопоставить синтез, Гейденгайн не может преодолеть метафизичность антитезы «часть или целое». Расчленяя организм на ступенчатую структурность (вместо гомотипной структурности клеточной теории), он не преодолевает относительности самого расчленения.

Гейденгайн делает ошибку, пытаясь создать всеобщую структурную теорию, охватывающую область субмикроскопических, микроскопических и макроскопических структур. Деление на эти области, конечно, серьезного научного значения не имеет, но несомненно, что не одни и те же структурные закономерности существуют в тканевых структурах и структурах такого порядка, как железы, скелетные части, кишечные ворсинки, метамеры и пр. Здесь Гейденгайн становится на механистическую точку зрения. Такой же механистический характер носит у него синтез. Это синтез от количественно малого к количественно большому. В некоторых пределах такой синтез закономерен; он объясняет, например, архитектонику отдельных органов, особенно железистых образований, внешнее формирование которых с точки зрения Гейденгайна приобретает известную ясность. Но такой синтез недостаточен там, где имеется переход количества в качество, где новые структуры являются не простым количественным усложнением старых (как, например, дольки железы, вкусовые почки, ворсинки кишечника, образующие дву-, три — и полимеры), а качественно отличные новообразования.

Наконец, теория Гейденгайна является только теорией сформированного организма. Она не дает никакого ключа к пониманию онтогенеза, оставляя последний совершенно вне поля зрения.

В начале второго десятилетия нашего века физиолог А. В. Леонтович (1869-1943) выступил с работой: «Синцеллий как доминирующая клеточная структура животного организма» (1912). «Тело животных в главной массе состоит не из клеток - элементарных организмов, - писал Леонтович, - а из синцеллиев. Элементарными организмами являются, может быть, лишь одни подвижные клетки соединительной ткани и лейкоциты крови». «Тем не менее, - заявляет автор, - основу всего вышесказанного образует клетка: именно, свойство клетки при известных нормальных условиях ее жизни давать синцеллий. Поэтому нельзя провозглашать, что клетка отжила свое время; она всегда останется в центре биологической мысли. Клеточное учение должно быть только дополнено теорией синцеллия и теми находками, которые уже дает и обещает в будущем разложение клетки на единицы низшего порядка» (стр. 86). В основном критика Леонтовича шла по пути Гейцмана, указывая на значение в организме неклеточных структур.

На трудность применения клеточной теории к эмбриогенезу обратил внимание американский эмбриолог Майнот (Charles Sedgwic Minot, 1852-1914). В лекциях, прочитанных в Иене и вышедших отдельным изданием (1913), Майнот отмечает, что разделение на клеточные территории не имеет в эмбриогенезе того значения, которое ему приписывают.

В 1911 г. с принципиальным возражением против одного из основных положений клеточного учения выступил английский протистолог Добелл (Clifford С. Dobell, 1886-1949). Он указал, что в понятии клетки смешиваются принципиально различные структуры: целостные организмы (протесты), структурные части организма (тканевые клетки) и структуры, потенциально равные целому организму (яйца). Понятие клетки Добелл предложил сохранить именно за тканевыми клетками. В противоположность целлюлярной схеме деления организмов на одноклеточные и многоклеточные, Добелл считает более правильным деление на клеточные и неклеточные организмы. «Отдельный протест не является гомологом отдельных клеток тела многоклеточных растений и животных; он может быть гомологизирован только с целым многоклеточным организмом… Несправедливо называть протестов простыми, низшими, одноклеточны ми или примитивными… Все эти прилагательные совершенно произвольны, и применение их к протестам ничем не оправдано, так как последние отличаются от Metazoa и Metaphyta тем, что они иначе организованы: неклеточные, в противоположность многоклеточным». Взгляды Добелла встретили широкий отклик как положительный, так и отрицательный. К обсуждению поставленной Добеллом проблемы трактовки протистов нам придется вернуться ниже.

Ряд работ посвятил критике клеточного учения немецкий зоолог Родэ (Emil Rhode, 1904, 1908, 1914, 1916, 1922). Он собрал много литературных и собственных данных о значении неклеточных структур для морфогенеза, но не всегда критически относился к приводимым литературным данным. Его положение: «при гистогенетической дифференцировке животных играют существенную роль не клетки, а многоядерные плазмодии; не клеткообразование, а функциональная дифференцировка живого вещества, т. е. многоядерных плазмодиев, является руководящим принципом развития организмов» (1914, стр. 133), - это положение так же односторонне, как объяснение всего хода онтогенеза ссылкой на размножение и дифференцировку клеток. Из одной крайности: все - клетки, Родэ попадает в другую крайность и заявляет: все - синцитии и плазмодии, а клетки являются лишь вторичными структурами, лишенными существенного значения. Такое чисто метафизическое разрешение вопроса не может вывести на правильную дорогу. Работы Родз встретили резкое возражение со стороны Ю. Шакселя (Julius Schaxel, 1915, 1917), критиковавшего Родэ за увлечение неклеточными структурами и непроверенные факты. Но Шаксель впадает в другую крайность, считая чисто целлюлярную точку зрения вполне достаточной для объяснения всех процессов развития.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Лишь один постулат клеточной теории оказался опровергнутым. Открытие вирусов показало, что утверждение "вне клеток нет жизни" ошибочно. Хотя вирусы, как и клетки, состоят из двух основных компонентов – нуклеиновой кислоты и белка, структура вирусов и клеток резко различна, что не позволяет считать вирусы клеточной формой организации материи. Вирусы не способны самостоятельно синтезировать компоненты собственной структуры – нуклеиновые кислоты и белки, - и их размножение возможно только при использовании ферментативных систем клеток. Поэтому вирус не является элементарной единицей живой материи.

Значение клетки как элементарной структуры и функции живого, как центра основных биохимических реакций, протекающих в организме, как носителя материальных основ наследственности делает цитологию важнейшей общебиологической дисциплиной.

КЛЕТОЧНАЯ ТЕОРИЯ

Как говорилось ранее, наука о клетке – цитология, изучает строение и химический состав клеток, функции внутриклеточных структур, размножение и развитие клеток, приспособления к условиям окружающей среды. Это комплексная наука, связанная с химией, физикой, математикой, другими биологическими науками. Клетка - самая мелкая единица живого, лежащая в основе строения и развития растительных и животных организмов нашей планеты. Она представляет собой элементарную живую систему, способную к самообновлению, саморегуляции, самовоспроизведению. Но в природе не существует некой универсальной клетки: клетка мозга столь же сильно отличается от клетки мышц, как и от любого одноклеточного организма. Отличие выходит за рамки архитектуры - различно не только строение клеток, но и их функции.

И все же можно говорить о клетках в собирательном понятии. В середине XIX столетия на основе уже многочисленных знаний о клетке Т. Шванн сформулировал клеточную теорию (1838). Он обобщил имевшиеся знания о клетке и показал, что клетка представляет собой основную единицу строения всех живых организмов, что клетки растений и животных сходны по своему строению. Эти положения явились важнейшими доказательствами единства происхождения всех живых организмов, единства всего органического мира. Т. Шванн внес в науку правильное понимание клетки как самостоятельной единицы жизни, наименьшей единицы живого: вне клетки нет жизни.

Клеточная теория – одно из выдающихся обобщений биологии прошлого столетия, давшее основу для материалистического подхода к пониманию жизни, к раскрытию эволюционных связей между организмами.

Клеточная теория получила дальнейшее развитие в трудах ученых второй половины XIX столетия. Было открыто деление клеток и сформулировано положение о том, что каждая новая клетка происходит от такой же исходной клетки путем ее деления (Рудольф Вирхов, 1858). Карл Бэр открыл яйцеклетку млекопитающих и установил, что все многоклеточные организмы начинают свое развитие из одной клетки, и этой клеткой является зигота. Это открытие показало, что клетка – не только единица строения, но и единица развития всех живых организмов.

Клеточная теория сохранила свое значение и в настоящее время. Она была неоднократно проверена и дополнена многочисленными материалами о строении, функциях, химическом составе, размножении и развитии клеток разнообразных организмов.

Современная клеточная теория включает следующие положения:

è Клетка – основная единица строения и развития всех живых организмов, наименьшая единица живого;

è Клетки всех одноклеточных и многоклеточных организмов сходны (гомологичны) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ;

è Размножение клеток происходит путем их деления, и каждая новая клетка образуется в результате деления исходной (материнской) клетки;

è В сложных многоклеточных организмах клетки специализированы по выполняемой ими функции и образуют ткани; из тканей состоят органы, которые тесно связаны между собой и подчинены нервным и гуморальным системам регуляции.

Общие черты и позволяют нам говорить о клетке вообще, подразумевая некую среднюю типичную клетку. Все ее атрибуты - объекты абсолютно реальные, легко видимые в электронный микроскоп. Правда, эти атрибуты менялись - вместе с силой микроскопов. На схеме клетки, созданной в 1922 году с помощью светового микроскопа, всего четыре внутренние структуры; с 1965 года, основываясь на данных электронной микроскопии, мы рисуем уже, по меньшей мере, семь структур. Причем, если схема 1922 года более походила на картину абстракциониста, то современная схема сделала бы честь художнику-реалисту.

Давайте подойдем поближе к этой картине, чтобы лучше рассмотреть отдельные ее детали.

СТРОЕНИЕ КЛЕТКИ

Клетки всех организмов имеют единый план строения, в котором четко проявляется общность всех процессов жизнедеятельности. Каждая клетка включает в свой состав две неразрывно связанные части: цитоплазму и ядро. Как цитоплазма, так и ядро характеризуются сложностью и строгой упорядоченностью строения и, в свою очередь, в состав их входит множество разнообразных структурных единиц, выполняющих совершенно определенные функции.

Оболочка. Она осуществляет непосредственное взаимодействие с внешней средой и взаимодействие с соседними клетками (в многоклеточных организмах). Оболочка - таможня клетки. Она зорко следит за тем, чтобы в клетку не проникли ненужные в данный момент вещества; наоборот, вещества, в которых клетка нуждается, могут рассчитывать на ее максимальное содействие.

Оболочка ядра двойная; состоит из внутренней и наружной ядерных мембран. Между этими мембранами располагается перинуклеарное пространство. Наружная ядерная мембрана обычно связана с каналами эндоплазматической сети.

Оболочка ядра содержит многочисленные поры. Они образуются смыканием наружной и внутренней мембран и имеют различный диаметр. В некоторых ядрах, например ядрах яйцеклеток, пор очень много и они с правильными интервалами расположены на поверхности ядра. Количество пор в ядерной оболочке варьирует в различных типах клеток. Поры расположены на равном расстоянии друг от друга. Так как диаметр поры может изменяться, и в ряде случаев ее стенки обладают довольно сложной структурой, создается впечатление, что поры сокращаются, или замыкаются, или, наоборот, расширяются. Благодаря порам кариоплазма входит в непосредственный контакт с цитоплазмой. Через поры легко проходят довольно крупные молекулы нуклеозидов, нуклеотидов, аминокислот и белков, и таким образом осуществляется активный обмен между цитоплазмой и ядром.

Цитоплазма. Основное вещество цитоплазмы, называемое также гиалоплазмой или матриксом, - это полужидкая среда клетки, в которой располагается ядро и все органоиды клетки. Под электронным микроскопом вся гиалоплазма, располагающаяся между органоидами клетки, имеет мелкозернистую структуру. Слой цитоплазмы формирует разные образования: реснички, жгутики, поверхностные выросты. Последние играют важную роль в движении и соединении клеток между собой в ткани.